Skip to main content
Log in

Dietary tryptophan supplementation does not affect growth but increases brain serotonin level and modulates the expression of some liver genes in zebrafish (Danio rerio)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This study aimed at assessing the effects of the dietary tryptophan (Trp) supplementation on growth and feed utilization, brain serotonin content, and expression of selected liver genes (involved in the liver serotonin pathway, protein synthesis degradation, and antioxidant activity) in zebrafish. A growth trial was conducted with zebrafish juveniles fed five experimental isoproteic (40%DM) and isolipidic (8%DM) fishmeal-based diets containing graded levels of Trp: a Trp-non-supplemented diet (diet Trp0, with 0.22% Trp) and four Trp-supplemented diets containing 2–16 times higher Trp content (diets Trp2, Trp4, Trp8, and Trp16 with 0.40, 0.91, 2.02, and 3.34% Trp, respectively). Diets were tested in quadruplicate, with fish being fed twice a day, 6 days a week for 6 weeks to apparent visual satiation. At the end of the trial, growth performance and feed utilization were assessed, and fish from all experimental groups were sampled for whole-body composition analysis. In addition, fish fed low (Trp0), medium (Trp4), and high (Trp16) Trp diets were also sampled for analysis of brain serotonin content and liver gene expression. Tested tryptophan levels did not influence growth performance nor feed intake. However, values of energy and nitrogen retention as well as body energy content indicate a better feed utilization with diets containing around 0.9% and 2.0% DM Trp. Brain serotonin content increased with increasing dietary tryptophan levels. In addition, regarding liver genes, dietary treatment had a modulatory effect on the expression of Htr1aa and Htr2cl1 genes (encoding for serotonin receptors), TPH1a gene (encoding for tryptophan hydroxylase, the rate-limiting enzyme in the synthesis of serotonin from tryptophan), TOR gene (involved in protein synthesis), and Keap1 gene (involved in antioxidant responses).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Ahmed I (2012) Dietary amino acid L-tryptophan requirement of fingerling Indian catfish, Heteropneustes fossilis (Bloch), estimated by growth and heamato-biochemical parameters. Fish Physiol Biochem 38:1195–1209

    Article  CAS  PubMed  Google Scholar 

  • Ahmed I, Khan MA (2005) Dietary tryptophan requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton). Aquac Res 36:687–695

    Article  CAS  Google Scholar 

  • Akiyama T, Shiraishi M, Yamamoto T, Unuma T (1996) Effect of Dietary Tryptophan on Maturation of Ayu Plecoglossus altivelis Fish Sci 62:776–782

  • Aleström P, D’Angelo L, Midtlyng PJ, Schorderet DF, Schulte-Merker S, Sohm F, Warner S (2020) Zebrafish: housing and husbandry recommendations. Lab Anim 54:213–224

    Article  PubMed  CAS  Google Scholar 

  • Azeredo R, Machado M, Guardiola FA, Cerezuela R, Afonso A, Peres H, Oliva Teles A, Esteban MA, Costas B (2017) Local immune response of two mucosal surfaces of the European seabass, Dicentrarchus labrax, fed tryptophan-or methionine supplemented diets. Fish Shellfish Immunol 70:76–86

    Article  CAS  PubMed  Google Scholar 

  • Basic D, Schjolden J, Krogdahl A, von Krogh K, Hillestad M, Winberg S (2013) Changes in regional brain monoaminergic activity and temporary down-regulation in stress response from dietary supplementation with L-tryptophan in Atlantic cod (Gadus morhua). Br J Nutr 109:2166–2174

    Article  CAS  PubMed  Google Scholar 

  • Beckman BR (2011) Perspectives on concordant and discordant relations between insulin-like growth factor 1 (IGF1) and growth in fishes. Gen Comp Endocrinol 170:233–252

    Article  CAS  PubMed  Google Scholar 

  • Caamaño-Tubío RI, Pérez J, Ferreiro S, Aldegunde M (2007) Peripheral serotonina dynamics in the rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol 145:245–255

    Article  PubMed  CAS  Google Scholar 

  • Charlon N, Bergot P (1984) Rearing system for feeding fish larvae on dry diets. Trial with carp (Cyprinus carpio L.) larvae. Aquaculture 41:1–9

    Article  Google Scholar 

  • Chen Y, Xu H, Zhu M, Liu K, Lin B, Lio R, Chen C, Li M (2017) Stress inhibits tryptophan hydroxylase expression in a rat model of depression. Oncotarget 8:63247–63257

    Article  PubMed  PubMed Central  Google Scholar 

  • Costas B, Aragão C, Mancera JM, Dinis MT, Conceição LE (2008) High stock density induces crowding stress and affects amino acid metabolism in Senegalese sole Solea senegalensis (Kaup, 1858) juveniles. Aquac Res 39:1–9

    Article  CAS  Google Scholar 

  • Cuesta A, Cerezuela R, Esteban MA, Meseguer J (2008) In vivo actions of melatonin on the innate immune parameters in the teleost fish gilthead seabream. J Pineal Res 45:70–78

    Article  CAS  PubMed  Google Scholar 

  • De Pedro N, Pinillos ML, Valenciano AI, Alonso-Bedate M, Delgado MJ (1998) Inhibitory effect of serotonin on feeding behavior in goldfish: involvement of CRF. Peptides 19:505–511

    Article  PubMed  Google Scholar 

  • DeVries JW, Koski CM, Egberg DC, Larson PA (1980) Comparison between a spectrophotometric and a high-pressure liquid chromatography method for determining tryptophan in food products. J Agric Food Chem 28:896–898

    Article  CAS  PubMed  Google Scholar 

  • Falcón J, Migaud H, Muñoz-Cueto JA, Carrillo M (2010) Current knowledge on the melatonin system in teleost fish. Gen Comp Endocrinol 165:469–482

  • Fernstrom JD (2016) A perspective on the safety of supplemental tryptophan based on its metabolic fates. J Nutr 146(Suppl):2601S-2608S

    Article  CAS  PubMed  Google Scholar 

  • Fraser KP, Rogers AD (2007) Protein metabolism in marine animals: the underlying mechanism of growth. Adv Mar Biol 52:267–362

    Article  PubMed  Google Scholar 

  • FuseY, Kobayashi M (2017) Conservation of the Keap1-Nrf2 system: an evolutionary journey through stressful space and time. Molecules 22:436

  • Gaylord TG, Rawles SD, Davis KB (2005) Dietary tryptophan requirement of hybrid striped bass (Morone chrysops x M. saxatilis) Aquac Nutr 11:367–374

  • Herrero M, Martínez F, Míguez J, Madrid J (2007) Response of plasma and gastrointestinal melatonin, plasma cortisol and activity rhythms of European sea bass (Dicentrarchus labrax) to dietary supplementation with tryptophan and melatonin. J Comp Physiol B 177:319–326

    Article  CAS  PubMed  Google Scholar 

  • Höglund E, Bakke MJ, Øverli Ø, Winberg S, Nilsson GE (2005) Suppression of aggressive behavior in juvenile Atlantic cod (Gadus morhua) by L-tryptophan supplementation. Aquaculture 249:525–531

    Article  CAS  Google Scholar 

  • Höglund E, Sørensen C, Bakke MJ, Nilsson GE, Øverli Ø (2007) Attenuation of stress-induced anorexia in brown trout (Salmo trutta) by pre-treatment with dietary L-tryptophan. Br J Nutr 97:786–789

    Article  PubMed  CAS  Google Scholar 

  • Höglund E, Øverli Ø, Andersson MÅ, Silva P, Laursen DC, Moltesen MM, Krogdahl Å, Schjolden J, Winberg S, Vindas MA, Mayer I, Hillestad M (2017) Dietary L-tryptophan leaves a lasting impression on the brain and stress response. Br J Nutr 117:1351–1357

    Article  PubMed  CAS  Google Scholar 

  • Höglund E, Øverli Ø, Winberg S (2019) Tryptophan metabolic pathways and brain serotonergic activity: a comparative review. Front Endocrinol 10:158

  • Horzmann KA, Freeman JL (2016) Zebrafish get connected: investigating neurotransmission targets and alterations in chemical toxicity. Toxics 4:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoseini SM, Pérez-Jiménez A, Costas B, Azeredo R, Gesto M (2019) Physiological roles of tryptophan in teleosts: current knowledge and perspectives for future studies. Rev Aquac 11:3–24

    Article  Google Scholar 

  • Hseu JR, Lu FI, Su HM (2003) Effect of exogenous tryptophan on cannibalism survival and growth in juvenile grouper, Ephinephelus coioides. Aquaculture 218:251–263

    Article  CAS  Google Scholar 

  • Jiang W-D, Wen H-L, Liu Y, Jiang J, Kuang S-Y, Wu P, Zhao J, Tang L, Tang W-N, Zhang YA, Zhou X-Q, Feng L (2015) The tight junction protein transcript abundance changes and oxidative damage by tryptophan deficiency or excess are related to the modulation of the signaling molecules, NF-rB, p65, TOR, caspase-(3,8,9) and Nrf2 mRNA levels, in the gill of young grass carp (Ctenopharyngodon idellus). Fish Shellfish Immunol 46:168–180

    Article  CAS  PubMed  Google Scholar 

  • Johnston WL, Atkinson JL, Hilton JW, Were KE (1990) Effect of dietary tryptophan on plasma and brain tryptophan, brain serotonin and brain 5-hydroxyindoleacetic acid in rainbow trout. J Nutr Biochem 1:49–54

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, Hong SW, Zheng HM, Lee HS, Lee H, Lee DH (2010) Melatonin ameliorates cerulein-induced pancreatitis by the modulation of nuclear erythroid 2-related factor 2 and nuclear factor-kappaB in rats. Pineal Res 48:239–250

    Article  CAS  Google Scholar 

  • Katzung BG, Masters SB, Trevor A (2012) Basic and clinical pharmacology, 12th edn. The McGraw-Hill Companies, United States, pp 297–303

    Google Scholar 

  • Le Floc’h N, Otten W, Merlot E, (2011) Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids 41:1195–1205

    Article  CAS  Google Scholar 

  • Lepage O, Tottmar O, Winberg S (2002) Elevated dietary intake of L-tryptophan counteracts the stress-induced elevation of plasma cortisol in rainbow trout (Oncorhynchus mykiss). J Exp Biol 205:3679–3687

    Article  CAS  PubMed  Google Scholar 

  • Lepage O, Vilchez IM, Pottinger TG, Winberg S (2003) Timecourse of the effect of dietary L-tryptophan on plasma cortisol levels in rainbow trout Oncorhynchus mykiss.J Exp Biol 206: 3589–3599

  • Lepage O, Larson ET, Mayer L, Winberg S (2005) Serotonin, but not melatonin plays a role in shaping dominant-subordinate relationships and aggression in rainbow trout. Horm Behav 48:33–242

    Article  CAS  Google Scholar 

  • Lillesaar C (2011) The serotonergic system in fish. J Chem Neuroanat 41:294–308

    Article  CAS  PubMed  Google Scholar 

  • López-Olmeda JF, Bayarri MJ, Rol de Lama MA, Madrid JA, Sánchez-Vázquez FJ (2006) Effects of melatonin administration on oxidative stress and daily locomotor activity patterns in goldfish. J Physiol Biochem 62:17–25

    Article  PubMed  Google Scholar 

  • Martins CIM, Silva PIM, Costas B, Larser BK, Santos GA, Conceição LEC, Dias J, Øverli Ø, Höglund E, Schrama JW (2013) The effect of tryptophan supplemented diets on brain serotonerfic activity and plasma cortisol under undisturbed and stressed conditions in grouped-housed Nile tilapia Oreochromis niloticus. Aquaculture 400–401:129–134

    Article  CAS  Google Scholar 

  • Matthes S, Bader M (2018) Peripheral serotonin synthesis as a new drug target. Trends Pharmacol Sci 39:560–572

    Article  CAS  PubMed  Google Scholar 

  • Murthy HS, Varghese TJ (1997) Dietary tryptophan requirement for growth of rohu, Labeo rohita. J Appl Aquac 7:71–79

    Article  Google Scholar 

  • NRC (National Research Council) (2011) Nutrient requirements of fish and shrimp. The National Academies Press, Washington, D.C., USA, p 360

    Google Scholar 

  • Ortega VA, Renner KJ, Bernier NJ (2005) Appetite-suppressing effects of ammonia exposure in rainbow trout associated with regional and temporal activation of brain monoaminergic and CRF systems. J Exp Biol 208:1855–1866

    Article  CAS  PubMed  Google Scholar 

  • Øverli Ø, Winberg S, Damsgard B, Jobling M (1998) Food intake and spontaneous swimming activity in Arctic char (Salvelinus alpinus): role of brain serotonergic activity and social interactions. Can J Zool 76:1366–1370

    Article  Google Scholar 

  • Palego L, Betti L, Rossi A, Giannaccini G (2016) Tryptophan biochemistry: structural, nutritional, metabolic, and medical aspects in humans. J Amino Acids 8952520

  • Papoutsoglou SE, Karakatsouli N, Koustas P (2005a) Effects of dietary L-tryptophan and lighting conditions on growth performance of European sea bass (Dicentrarchus labrax) juveniles reared in a recirculating water system. J Appl Ichthyol 21:520–524

    Article  CAS  Google Scholar 

  • Papoutsoglou SE, Karakatsouli N, Chiras G (2005b) Dietary l-tryptophan and tank colour effects on growth performance of rainbow trout (Oncorhynchus mykiss) juveniles reared in a recirculating water system. Aquac Eng 32:277–284

    Article  Google Scholar 

  • Park S, Kim Y, Lee JY, Kim H, Lee S, Oh C-MA (2021) Systems biology approach to investigating the interaction between serotonin synthesis by tryptophan hydroxylase and the metabolic homeostasis. Int J Mol Sci 22:2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pianesso D, Neto R, da Silva LP, Goulart FR, Adorian TJ, Mombach PI, Loureiro BB, Dalcin MO, Rotili DA, Lazzari R (2015) Determination of tryptophan requirements for juvenile silver catfish (Rhamdia quelen) and its effects on growth performance, plasma and hepatic metabolites and digestive enzymes activity. Anim Feed Sci Technol 210:172–183

    Article  CAS  Google Scholar 

  • Plaffl MW (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

  • Plafker KS, Nguyen L, Barneche M, Mirza S, Crawford D, Plafker SM (2010) The ubiquitin-conjugating enzyme UbcM2 can regulate the stability and activity of the antioxidant transcription factor Nrf2. J Biol Chem 285:23064–23074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolland M, Dalsgaard J, Holm J, Gómez-Requeni P, Skov PV (2015) Dietary methionine level affects growth performance and hepatic gene expression of GH-IGF system and protein turnover regulators in rainbow trout (Oncorhynchus mykiss) fed plant protein-based diets. Comp Biochem Physiol B 181:33–41

    Article  CAS  PubMed  Google Scholar 

  • Rubio VC, Sanchez-Vazquez FJ, Madrid JA (2006) Oral serotonin administration affects the quantity and the quality of macronutrients selection in European sea bass Dicentrarchus labrax L. Physiol Behav 87:7–15

    Article  CAS  PubMed  Google Scholar 

  • Ruddell RG, Mann DA, Ramm GA (2008) The function of serotonin within the liver. J Hepatol 48:666–675

    Article  CAS  PubMed  Google Scholar 

  • Ruibal C, Soengas JL, Aldegunde M (2002) Brain serotonin and the control of food intake in rainbow trout (Oncorhynchus mykiss): effects of changes in plasma glucose levels. J Comp Physiol A 188:479–484

  • Soares-da-Silva P, Pestana M, Vieira-Coelho MA, Fernandes MH, Albino-Teixeira A (1995) Assessment of renal dopaminergic system activity in the nitric oxide-deprived hypertensive rat model. Br J Pharmacol 114:1403–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang L, Feng L, Sun C-Y, Chen G-F, Jiang W-D, Hu K, Liu Y, Jiang J, Li S-H, Kuang S-Y, Zhou X-Q (2013) Effect of tryptophan on growth, intestinal enzyme activities and TOR gene expression in juvenile Jian carp (Cyprinus carpio var. Jian): studies in vivo and in vitro. Aquaculture 412:23–33

    Article  CAS  Google Scholar 

  • Tejpal CS, Pal AK, Sahu NP, Ashish Kumar J, Muthappa NA, Vidva S, Rajan MG (2009) Dietary supplementation of L-tryptophan mitigates crowding stress and augments the growth in Cirrhinus mrigala fingerlings. Aquaculture 293:272–277

    Article  CAS  Google Scholar 

  • Urbatzka R, Galante-Oliveira S, Castro LF, Cunha I (2013) Normalization strategies for gene expression studies by real-time PCR in a marine fish species, Scophthalmus maximus. Mar Genomics 10:17–25

    Article  CAS  PubMed  Google Scholar 

  • Wen HI, Feng L, Jiang WD, Liu Y, Jiang J, Li SH, Tang L, Zhang YG, Kuang SY, Zhou X (2014) Dietary tryptophan modulates intestinal immune response, barrier function, antioxidant status and gene expression of TOR and Nrf2 in young grass carp (Ctenopharyngofon idella) Fish Shellfish Immunol 40:275–287

  • Winberg S, Øverli Ø, Lepage O (2001) Suppression of aggression in rainbow trout (Oncorhynchus mykiss) by dietary L-tryptophan. J Exp Biol 204:3867–3876

    Article  CAS  PubMed  Google Scholar 

  • Winberg S, Thörnqvist P-O (2016) Role of brain serotonin in modulating fish behavior. Curr Zool 62:317–323

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolkers CPB, Serra M, Hoshiba MA, Urbinati EC (2012) Dietary L-tryptophan alters aggression in juvenile matrinxa Brycon amazonicus. Fish Physiol Biochem 38:819–827

    Article  CAS  PubMed  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions and nutrition. Amino Acids 37:1–17

    Article  PubMed  CAS  Google Scholar 

  • Xu K., Liu G., Fu C. (2018) The tryptophan pathway targeting antioxidant capacity in the placenta. Oxid. Med. Cell. Longev. ID: 1054797

  • Yang Q, Yan C, Yin C, Gong Z (2017) Serotonin activated hepatic stellate cells contribute to sex disparity in hepatocellular carcinoma. Cell Mol Gastroenterol Hepatol 3:484–499

    Article  PubMed  PubMed Central  Google Scholar 

  • Yabut JM, Crane JD, Green AE, Keating DJ, Khan WI, Steinberg GR (2019) Emerging roles for serotonin in regulating metabolism: new implications for an ancient molecule. Endocr Rev 40:1092–1107

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaminhan M, Michelato M, Furuya VRB, Boscolo WR, Araújo FE, Cruz TP, Urbich AV, Furuya WM (2018) Total and available tryptophan requirement of Nile tilapia, Oreochromis niloticus, fingerlings. Aquac Nutr 24:1553–1562

    Article  CAS  Google Scholar 

  • Zhang DD, Hannick M (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23:8137–8151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Wu X-Y, Xu S-X, Cien J-Y, Xiang K-W, Feng L, Liu Y, Jiang W-D, Wu P, Zhao J, Zhou X-Q, Jiang J (2019) Dietary tryptophan affects growth performance, digestive and absorptive enzyme activities, intestinal antioxidant capacity and appetite and GH-IGF axis-related gene expression of hybrid catfish (Pelteobagrus vachelli♀ x Leiocassis longirostris♂). Fish Physiol Biochem 45:1627–1647

    Article  CAS  PubMed  Google Scholar 

  • Zheng J-L, Zeng L, Shen B, Xu M-Y, Zhu AY, Wu C-W (2016) Antioxidant defenses at transcriptional and enzymatic levels and gene expression of Nrf2-Keap1 signaling molecules in response to acute zinc exposure in the spleen of the large yellow croaker Pseudosciaena crocea. Fish Shellfish Immunol 52:1–8

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was funded by Programa Operacional Mar2020, Portugal 2020 under the project InovFeed (ref. MAR-02.01.01-FEAMP-0111).

Author information

Authors and Affiliations

Authors

Contributions

C.T., H.P., and A.P.C. conceived the study and designed the trial. C.T. and A.P.C. carried out the experiments. C.T., P.R., P.S., and L.F. carried out the chemical, biochemical, and genomic analyses. C.T., H.P., L.G., and L.O.T. analyzed the data. C.T., A.P.C., and L.G. wrote and L.O.T. revised the manuscript.

Corresponding author

Correspondence to Cláudia Teixeira.

Ethics declarations

Ethics approval

The experiment was carried out in compliance with the European Union directive 2010/63/EU on the protection of animals used for scientific purposes.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, C., Rodrigues, P., Serrão, P. et al. Dietary tryptophan supplementation does not affect growth but increases brain serotonin level and modulates the expression of some liver genes in zebrafish (Danio rerio). Fish Physiol Biochem 47, 1541–1558 (2021). https://doi.org/10.1007/s10695-021-00994-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-021-00994-x

Keywords

Navigation