Skip to main content

Advertisement

Log in

Anti-miR33 therapy improved hepatopancreatic lipid and immune metabolism disorders in grass carp, Ctenopharyngodon idella

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Lipid metabolism disorders are found ubiquitously in farmed fish and occur as a result of excessive fat accumulation. Previous studies have found that miR-33 is involved in lipid metabolism; however, its role in fish lipid metabolism is unclear. We sought to clarify this relationship in grass carp in vivo and in vitro. Our findings revealed the length of miR-33 to be 65 bp. Phylogenetic tree analysis showed that grass carp miR-33 was most closely related to fish miR-33 (Siganus canaliculatus). Hepatocytes transfected with miR-33 mimic displayed markedly raised TG content (P < 0.05) as well as increased levels of lipid synthesis-related transcription factors (P < 0.05). Compared with blank and saline groups, total serum cholesterol, AST, and LDL levels were suppressed in groups treated with the miR-33 antagomir (P < 0.05). Moreover, the expression levels of PPARγ and SREBP-1c mRNA were significantly decreased in contrast to those found in the control group (P < 0.05). Similar findings were noted in the expression of immune-related proinflammatory molecules (TNFα, IL-1β, IL-6, and NF-κB), which also demonstrated decreased levels (P < 0.05). Conversely, high expressions of anti-inflammatory factors (TGF-β1 and IL-10) were noted (P < 0.05). This investigation strongly supports the role of miR-33 in hepatopancreas-based lipid metabolism and immunity. miR-33 may have been highly conserved in early vertebrates in order to facilitate liver-specific metabolic and immunomodulatory functions. Our findings provide a basis for further investigations exploring the mechanisms surrounding fish lipid metabolism and may aid in preventing and treating immunocompromised fish as well as fish with fatty hepatopancreas, and other metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Code availability

Not applicable.

Abbreviations

TG:

Triglyceride

TP:

Total protein

HDL:

High-density lipoprotein

LDL:

Low-density lipoprotein

Glu:

Glucose

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

CHOL:

Cholesterol

TGF-β1:

Transforming growth factor-1

NF-κB:

Nuclear factor-κB

TNF-α:

Tumor necrosis factor-α

miRNA:

MicroRNA

CPT1:

Carnitine palmitoyltransferase 1

ATGL:

Adipose triglyceride lipase

FAS:

Fatty acid synthase

ACC:

Acetyl CoA carboxylase

SCD-1:

Stearoyl-coenzyme A desaturase 1

PPAR:

Peroxisome proliferator-activated receptor

SREBP-1:

Sterol regulatory element-binding proteins-1

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

IL-10:

Interleukin-10

AMPK:

AMP-activated protein kinase

References

  • Alrob OA, Khatib S, Naser SA (2017) MicroRNAs 33, 122, and 208: a potential novel targets in the treatment of obesity, diabetes, and heart-related diseases. J Physiol Biochem 73(2):307–314

    Article  CAS  Google Scholar 

  • Aryal B, Singh AK, Rotllan N, Price N, Fernández-Hernando C (2017) MicroRNAs and lipid metabolism. Curr Opin Lipidol 28(3):273–280

    Article  CAS  Google Scholar 

  • Bizuayehu TT, Babiak I (2014) MicroRNA in teleost fish. Genome Biol Evol 6(8):1911–1937

    Article  Google Scholar 

  • Castaño C, Kalko S, Novials A, Párrizas M (2018) Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc Natl Acad Sci USA 115(48):12158–12163

    Article  Google Scholar 

  • Chun S, Bamba T, Suyama T, Ishijima T, Fukusaki E, Abe K, Nakai Y (2016) A high phosphorus diet affects lipid metabolism in rat liver: a DNA microarray analysis. PLoS ONE 11(5):e0155386

    Article  Google Scholar 

  • Dávalos A, Goedeke L, Smibert P, Ramírez CM, Warrier NP, Andreo U, Cirera-Salinas D, Rayner K, Suresh U, Pastor-Pareja JC, Esplugues E, Fisher EA, Penalva LO, Moore KJ, Suárez Y, Lai EC, Fernández-Hernando C (2011) miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci USA 108(22):9232–9237

    Article  Google Scholar 

  • Deng XJ, Qin SS, Chen YQ, Liu HY, Yuan E, Deng HH, Liu SM (2018) B-RCA revealed circulating miR-33a/b associates with serum cholesterol in type 2 diabetes patients at high risk of ASCVD. Diabetes Res Clin Pract 140:191–199

    Article  CAS  Google Scholar 

  • Ding HR, Wang JL, Ren HZ, Shi XL (2018). Lipometabolism and glycometabolism in liver diseases. BioMed research international, 1287127.

  • Flowers E, Froelicher ES, Aouizerat, BE (2013).MicroRNA regulation of lipid metabolism. Metabolism: clinical and experimental, 62(1), 12–20.

  • Foretz M, Viollet B (2011) Regulation of hepatic metabolism by AMPK. J Hepatol 54(4):827–829

    Article  Google Scholar 

  • Gerin I, Clerbaux LA, Haumont O, Lanthier N, Das AK, Burant CF, Leclercq IA, MacDougald OA, Bommer GT (2010) Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 285(44):33652–33661

    Article  CAS  Google Scholar 

  • Goedeke L, Salerno A, Ramírez CM, Guo L, Allen RM, Yin X, Langley SR, Esau C, Wanschel A, Fisher EA, Suárez Y, Baldán A, Mayr M, Fernández-Hernando C (2014) Long-term therapeutic silencing of miR-33 increases circulating triglyceride levels and hepatic lipid accumulation in mice. EMBO Mol Med 6(9):1133–1141

    Article  CAS  Google Scholar 

  • Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D, Chamorro-Jorganes A, Ramírez CM, Mattison JA, de Cabo R, Suárez Y, Fernández-Hernando C (2013) A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Mol Cell Biol 33(11):2339–2352

    Article  CAS  Google Scholar 

  • Horie T, Ono K, Horiguchi M, Nishi H, Nakamura T, Nagao K, Kinoshita M, Kuwabara Y, Marusawa H, Iwanaga Y, Hasegawa K, Yokode M, Kimura T, Kita T (2010) MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci USA 107(40):17321–17326

    Article  CAS  Google Scholar 

  • Horie T, Nishino T, Baba O, Kuwabara Y, Nakao T, Nishiga M, Usam S, Izuhara M, Sowa N, Yahagi N (2013) MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice. Nat Commun 4(1):2883–2883

    Article  Google Scholar 

  • Ho PC, Chang KC, Chuang YS, Wei LN (2011) Cholesterol regulation of receptor-interacting protein 140 via microRNA-33 in inflammatory cytokine production. The federation of American societies for experimental biology 25(5):1758–1766

    Article  CAS  Google Scholar 

  • Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P (2018) Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci 75(18):3313–3327

    Article  CAS  Google Scholar 

  • Lenas D, Chatziantoniou S, Nathanailides C, Triantafillou D (2011) Comparison of wild and farmed sea bass (Dicentrarchus labrax L) lipid quality. Procedia food science 1:1139–1145

    Article  CAS  Google Scholar 

  • Li PZ, Gao X, Sun XL, Li WZ, Yi B, Zhu LY (2019) A novel epigenetic mechanism of fxr inhibiting glp-1 secretion via MiR-33 and its downstream targets. Biochem Biophys Res Commun 517(4):629–635

    Article  CAS  Google Scholar 

  • Mennigen JA, Panserat S, Larquier M, Plagnes-Juan E, Medale F, Seiliez I, Skiba-Cassy S (2012) Postprandial regulation of hepatic microRNAs predicted to target the insulin pathway in rainbow trout. PLoS ONE 7(6):e38604

    Article  CAS  Google Scholar 

  • Mohammadi A, Fallah H, Shahouzehi B, Najafipour H (2017) MiR-33 inhibition attenuates the effect of liver X receptor agonist T0901317 on expression of liver X receptor alpha in mice liver. ARYA atherosclerosis 13(6):257–263

    PubMed  PubMed Central  Google Scholar 

  • Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE, Näär AM (2010). MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science (New York, N.Y.), 328(5985), 1566–1569.

  • Najafi-Shoushtari SH (2011) MicroRNAs in cardiometabolic disease. Curr Atheroscler Rep 13(3):202–207

    Article  CAS  Google Scholar 

  • Nettleton JA, Exler J (1992) Nutrients in wild and farmed fish and shellfish. J Food Sci 57(2):257–260

    Article  CAS  Google Scholar 

  • Ouimet M, Ediriweera H, Afonso MS, Ramkhelawon B, Singaravelu R, Liao X, Bandler RC, Rahman K, Fisher EA, Rayner KJ, Pezacki JP, Tabas I, Moore KJ (2017) microRNA-33 regulates macrophage autophagy in atherosclerosis. Arterioscler Thromb Vasc Biol 37(6):1058–1067

    Article  CAS  Google Scholar 

  • Ouimet M, Ediriweera HN, Gundra UM, Sheedy FJ, Ramkhelawon B, Hutchison SB, Rinehold K, van Solingen C, Fullerton MD, Cecchini K, Rayner KJ, Steinberg GR, Zamore PD, Fisher EA, Loke P, Moore KJ(2015). MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. The Journal of clinical investigation, 125(12), 4334–4348.

  • Ouimet M, Koster S, Sakowski E, Ramkhelawon B, Solingen CV, Oldebeken S, Karunakaran D, Portal-Celhay C, Sheedy FJ, Ray TD (2016) Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat Immunol 17(6):677–686

    Article  CAS  Google Scholar 

  • Price NL, Rotllan N, Canfrán-Duque A, Zhang X, Pati P, Arias N, Moen J, Mayr M, Ford DA, Baldán Á, Suárez Y, Fernández-Hernando C (2017) Genetic dissection of the impact of miR-33a and miR-33b during the progression of atherosclerosis. Cell Rep 21(5):1317–1330

    Article  CAS  Google Scholar 

  • Price NL, Singh AK, Rotllan N, Goedeke L, Wing A, Canfrán-Duque A, Diaz-Ruiz A, Araldi E, Baldán Á, Camporez JP, Suárez Y, Rodeheffer MS, Shulman GI, de Cabo R, Fernández-Hernando C (2018) Genetic ablation of miR-33 increases food intake, enhances adipose tissue expansion, promotes obesity and insulin resistance. Cell Rep 22:2133–2145

    Article  CAS  Google Scholar 

  • Qiang J, Tao YF, Bao JW, Chen J, Li HX, He J, Xu P (2018) High fat diet-induced miR-122 regulates lipid metabolism and fat deposition in genetically improved farmed tilapia (GIFT, Oreochromis niloticus) liver. Front Physiol 9:1422

    Article  Google Scholar 

  • Rayner KJ, Suárez Y, Dávalo A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ, Fernández-Hernando C (2010). MiR-33 contributes to the regulation of cholesterol homeostasis. Science (New York, N.Y.), 328(5985), 1570–1573.

  • Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, van Gils JM, Rayner AJ, Chang AN, Suarez Y, Fernandez-Hernando C, Fisher EA, Moore KJ (2011) Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Investig 121(7):2921–2931

    Article  CAS  Google Scholar 

  • Rosset S (2007) Efficient inference on known phylogenetic trees using Poisson regression. Bioinformatics 23(2):142–147

    Article  Google Scholar 

  • Subramanian S, Steer CJ (2019) Special issue: microRNA regulation in health and disease. Genes 10(6):457

    Article  CAS  Google Scholar 

  • Sun JJ, Zheng LG, Chen CY, Zhang JY, You CH, Zhang QH, Ma HY, Óscar M, Tocher DR, Wang SQ, Li YY (2019) MicroRNAs involved in the regulation of LC-PUFA biosynthesis in teleosts: miR-33 enhances LC-PUFA biosynthesis in Siganus canaliculatus by targeting insig1 which in turn upregulates srebp1. Mar Biotechnol 21:475–487

    Article  CAS  Google Scholar 

  • Sun Y, Zhang D, Liu XL, Li XS, Liu F, Yu Y, Jia S, Zhou YJ, Zhao YX (2018) Endoplasmic reticulum stress affects lipid metabolism in atherosclerosis via CHOP activation and over-expression of miR-33. Cellular Physiology and Biochemistry: International journal of experimental cellular physiology, biochemistry, and pharmacology 48(5):1995–2010

    Article  CAS  Google Scholar 

  • Wang JL, Lu RH, Sun JJ, Xie DZ, Yang F, Nie GX (2016) Differential expression of lipid metabolism-related genes and miRNAs in Ctenopharyngodon idella liver in relation to fatty liver induced by high non-protein energy diets. Aquac Res 48(8):4070–4085

    Article  Google Scholar 

  • Wang TJ, Yang B, Ji RL, Xu W, Mai KS, Ai QH (2017) Omega-3 polyunsaturated fatty acids alleviate hepatic steatosis-induced inflammation through Sirt1-mediated nuclear translocation of NF-κB p65 subunit in hepatocytes of large yellow croaker (Larmichthys crocea). Fish Shellfish Immunol 71:76–82

    Article  CAS  Google Scholar 

  • Xie QY, Wei M, Zhang B, Kang X, Liu D, Zheng W, Pan X, Quan Y, Liao DF, Shen J (2017) MicroRNA-33 regulates the NLRP3 inflammasome signaling pathway in macrophages. Mol Med Rep 17(2):3318–3327

    PubMed  Google Scholar 

  • Yu J, Peng J, Luan Z, Zheng F, Su W(2019). MicroRNAs as a novel tool in the diagnosis of liver lipid dysregulation and fatty liver disease. Molecules (Basel, Switzerland), 24(2), 230.

  • Zhao HH, Chong J, Tang R, Li L, Xia JG, Li DP (2018). Metabolomics investigation of dietary effects on flesh quality in grass carp (Ctenopharyngodon idellus). GigaScience, 7(10), giy111.

  • Zhang QH, You CH, Wang SQ, Dong YW, Monroig Ó, Tocher DR, Li YY (2016) The miR-33 gene is identified in a marine teleost: a potential role in regulation of LC-PUFA biosynthesis in Siganus canaliculatus. Sci Rep 6(1):32909–32909

    Article  CAS  Google Scholar 

  • Zhang QH, Xie DZ, Wang SQ, You CH, Monroig Ó, Tocher DR, Li YY (2014) miR-17 is involved in the regulation of LC-PUFA biosynthesis in vertebrates: effects on liver expression of a fatty acyl desaturase in the marine teleost Siganus canaliculatus. Biochem Biophys Acta 1841(7):934–943

    CAS  PubMed  Google Scholar 

  • Zhang M, Hou C, Li M, Qian Y, Xu W, Meng F, Wang R (2019) Modulation of lipid metabolism in juvenile yellow catfish (Pelteobagrus fulvidraco) as affected by feeding frequency and environmental ammonia. Fish Physiol Biochem 45(1):115–122

    Article  CAS  Google Scholar 

  • Zhou WH, Rahimnejad S, Tocher DR, Lu K, Zhang CX, Sun YZ (2019) Metformin attenuates lipid accumulation in hepatocytes of blunt snout bream (Megalobrama amblycephala) via activation of AMP-activated protein kinase. Aquaculture 499:90–100

    Article  CAS  Google Scholar 

  • Zhu Y, Hu P, Yao J, Xu D, Xu Y, Tan Q (2019) Optimal dietary alcoholic extract of lotus leaf improved growth performance and health status of grass carp (Ctenopharyngodon idellus). Fish Shellfish Immunol 93:1–7

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Joint Fund of Natural Science Foundation of China and Henan Province (U1704109), National Natural Science Foundation of China (31402311, 31673671, and 31872581), Science and Technology Breakthrough Major Project in Henan Province (182102410031), and Zhongyuan thousand talents plan-leading talents of Zhongyuan Science and Technology of Henan Province (204200510025).

Author information

Authors and Affiliations

Authors

Contributions

Ronghua Lu, Mengjun Lin, and Feng Yang designed the research study and interpreted the data; Ronghua Lu performed the experiments, analyzed the data, and wrote the manuscript; Shenzong Jia collected the literature; Guoxing Nie, Xiaolin Meng, Yuru Zhang, and Chaobin Qin revised the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Guo-Xing Nie.

Ethics declarations

Ethics approval

All procedures were performed in accordance with the Guide for Care and Use of Laboratory Animals and approved by the Henan Normal University Institutional Animal Care and Use Committee.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

PCR primer and interference sequence information in this study (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, RH., Lin, MJ., Yang, F. et al. Anti-miR33 therapy improved hepatopancreatic lipid and immune metabolism disorders in grass carp, Ctenopharyngodon idella. Fish Physiol Biochem 47, 1611–1622 (2021). https://doi.org/10.1007/s10695-021-00956-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-021-00956-3

Keywords

Navigation