Skip to main content
Log in

Temporal expression profiles of leptin and its receptor genes during early development and ovarian maturation of Cynoglossus semilaevis

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Leptin (Lep) plays a key role in the regulation of food intake and energy homeostasis in vertebrates. Our previous studies have provided evidence for the existence of two leptin genes (lepa and lepb) and one leptin receptor (lepr) gene in a flatfish, the half-smooth tongue sole (Cynoglossus semilaevis). However, the spatial-temporal expression patterns and possible roles of the leptin system during early development and ovarian maturation are still poorly understood in teleosts. In the current study, we evaluated dynamic expression profiles of lepa, lepb, and lepr mRNAs during various developmental stages in this species. Quantitative RT-PCR analysis indicated that both ligand (lepa and lepb) and receptor (lepr) genes were detected in unfertilized eggs and during embryogenesis but with different expression profiles. In addition, lepa, lepb, and lepr transcripts levels increased significantly during larval development, reaching the peak at 10, 25, and 30 days post-hatching (dph), respectively. On the other hand, changes in mRNA expression of these three genes at the brain-pituitary-gonad (BPG) axis were also investigated during ovarian maturation, and lepa, lepb, and lepr mRNAs varied greatly. Taken together, our results encompass the first study reporting the dynamic expression patterns of leptin and its receptor mRNAs in the order Pleuronectiformes, providing evidence that the leptin system could be functional and play important roles during early development and ovarian maturation in tongue sole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angotzi AR, Stefansson SO, Nilsen TO, Rathore RM, Ronnestad I (2013) Molecular cloning and genomic characterization of novel leptin-like genes in salmonids provide new insight into the evolution of the Leptin gene family. Gen Comp Endocrinol 187:48–59

    CAS  PubMed  Google Scholar 

  • Angotzi AR, Stefansson SO, Nilsen TO, Ovrebo JI, Andersson E, Taranger GL, Ronnestad I (2016) Identification of a novel leptin receptor duplicate in Atlantic salmon: expression analyses in different life stages and in response to feeding status. Gen Comp Endocrinol 235:108–119

    CAS  PubMed  Google Scholar 

  • Chen T, Chen S, Ren C, Hu C, Tang D, Yan A (2016) Two isoforms of leptin in the white cloud mountain minnow (Tanichthys albonubes): differential regulation by estrogen despite similar response to fasting. Gen Comp Endocrinol 225:174–184

    CAS  PubMed  Google Scholar 

  • Chisada S, Kurokawa T, Murashita K, Ronnestad I, Taniguchi Y, Toyoda A, Sakaki Y, Takeda S, Yoshiura Y (2014) Leptin receptor-deficient (knockout) medaka, Oryzias latipes, show chronical up-regulated levels of orexigenic neuropeptides, elevated food intake and stage specific effects on growth and fat allocation. Gen Comp Endocrinol 195:9–20

    CAS  PubMed  Google Scholar 

  • Denver RJ, Bonett RM, Boorse GC (2011) Evolution of leptin structure and function. Neuroendocrinology 94:21–38

    CAS  PubMed  Google Scholar 

  • Escobar S, Rocha A, Felip A, Carrillo M, Zanuy S, Kah O, Servili A (2016) Leptin receptor gene in the European sea bass (Dicentrarchus labrax): cloning, phylogeny, tissue distribution and neuroanatomical organization. Gen Comp Endocrinol 229:100–111

    CAS  PubMed  Google Scholar 

  • Froiland E, Murashita K, Jorgensen EH, Kurokawa T (2010) Leptin and ghrelin in anadromous Arctic charr: cloning and change in expressions during a seasonal feeding cycle. Gen Comp Endocrinol 165:136–143

    PubMed  Google Scholar 

  • Gorissen M, Flik G (2014) Leptin in teleostean fish, towards the origins of leptin physiology. J Chem Neuroanat 61-62:200–206

    CAS  PubMed  Google Scholar 

  • Gorissen M, Bernier NJ, Nabuurs SB, Flik G, Huising MO (2009) Two divergent leptin paralogues in zebrafish (Danio rerio) that originate early in teleostean evolution. J Endocrinol 201:329–339

    CAS  PubMed  Google Scholar 

  • Han D, Miao H, Nie Q, Miao S, Zhang Q, Zhang W, Mai K (2016) Leptin and its receptor in turbot Scophthalmus maximus: cloning, characterization and expression response to ratios of dietary carbohydrate-lipid. Fish Physiol Biochem 42:1665–1679

    CAS  PubMed  Google Scholar 

  • Huising MO, Geven EJ, Kruiswijk CP, Nabuurs SB, Stolte EH, Spanings FA, Verburg-van Kemenade BM, Flik G (2006) Increased leptin expression in common Carp (Cyprinus carpio) after food intake but not after fasting or feeding to satiation. Endocrinology 147:5786–5797

    CAS  PubMed  Google Scholar 

  • Kurokawa T, Murashita K (2009) Genomic characterization of multiple leptin genes and a leptin receptor gene in the Japanese medaka, Oryzias latipes. Gen Comp Endocrinol 161:229–237

    CAS  PubMed  Google Scholar 

  • Kurokawa T, Uji S, Suzuki T (2005) Identification of cDNA coding for a homologue to mammalian leptin from pufferfish, Takifugu rubripes. Peptides 26:745–750

    CAS  PubMed  Google Scholar 

  • Kurokawa T, Murashita K, Suzuki T, Uji S (2008) Genomic characterization and tissue distribution of leptin receptor and leptin receptor overlapping transcript genes in the pufferfish, Takifugu rubripes. Gen Comp Endocrinol 158:108–114

    CAS  PubMed  Google Scholar 

  • Liu X, Zhuang Z, Ma A, Chen S, Sun Z, Liang Y, Xu Y (2005) Reproductive biology and breeding technology of Cynoglossus semilaevis. Mar Fish Res 26:7–14

    CAS  Google Scholar 

  • Liu Q, Chen Y, Copeland D, Ball H, Duff RJ, Rockich B, Londraville RL (2010) Expression of leptin receptor gene in developing and adult zebrafish. Gen Comp Endocrinol 166:346–355

    CAS  PubMed  Google Scholar 

  • Liu Q, Dalman M, Chen Y, Akhter M, Brahmandam S, Patel Y, Lowe J, Thakkar M, Gregory AV, Phelps D, Riley C, Londraville RL (2012) Knockdown of leptin A expression dramatically alters zebrafish development. Gen Comp Endocrinol 178:562–572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Liu X, Wen H, Xu Y, Zhang L (2006) Histological observation on gonadal sex differentiation in Cynoglossus semilaevis. Mar Fish Res 27:55–61

    Google Scholar 

  • Morini M, Pasquier J, Dirks R, van den Thillart G, Tomkiewicz J, Rousseau K, Dufour S, Lafont AG (2015) Duplicated leptin receptors in two species of eel bring new insights into the evolution of the leptin system in vertebrates. PLoS One 10:e0126008

    PubMed  PubMed Central  Google Scholar 

  • Murashita K, Uji S, Yamamoto T, Ronnestad I, Kurokawa T (2008) Production of recombinant leptin and its effects on food intake in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 150:377–384

    PubMed  Google Scholar 

  • Murashita K, Jordal AE, Nilsen TO, Stefansson SO, Kurokawa T, Bjornsson BT, Moen AG, Ronnestad I (2011) Leptin reduces Atlantic salmon growth through the central pro-opiomelanocortin pathway. Comp Biochem Physiol A Mol Integr Physiol 158:79–86

    PubMed  Google Scholar 

  • Ohga H, Matsumori K, Kodama R, Kitano H, Nagano N, Yamaguchi A, Matsuyama M (2015) Two leptin genes and a leptin receptor gene of female chub mackerel (Scomber japonicus): Molecular cloning, tissue distribution and expression in different obesity indices and pubertal stages. Gen Comp Endocrinol 222:88–98

    CAS  PubMed  Google Scholar 

  • Ohga H, Hirata D, Matsumori K, Kitano H, Nagano N, Yamaguchi A, Matsuyama M (2017) Possible role of the leptin system in controlling puberty in the male chub mackerel, Scomber japonicus. Comp Biochem Physiol A Mol Integr Physiol 203:159–166

    CAS  PubMed  Google Scholar 

  • Ronnestad I, Nilsen TO, Murashita K, Angotzi AR, Gamst Moen AG, Stefansson SO, Kling P, Thrandur Bjornsson B, Kurokawa T (2010) Leptin and leptin receptor genes in Atlantic salmon: Cloning, phylogeny, tissue distribution and expression correlated to long-term feeding status. Gen Comp Endocrinol 168:55–70

    CAS  PubMed  Google Scholar 

  • Shao C, Bao B, Xie Z, Chen X, Li B, Jia X, Yao Q, Orti G, Li W, Li X, Hamre K, Xu J, Wang L, Chen F, Tian Y, Schreiber AM, Wang N, Wei F, Zhang J, Dong Z, Gao L, Gai J, Sakamoto T, Mo S, Chen W, Shi Q, Li H, Xiu Y, Li Y, Xu W, Shi Z, Zhang G, Power DM, Wang Q, Schartl M, Chen S (2017) The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry. Nat Genet 49:119–124

    CAS  PubMed  Google Scholar 

  • Shpilman M, Hollander-Cohen L, Ventura T, Gertler A, Levavi-Sivan B (2014) Production, gene structure and characterization of two orthologs of leptin and a leptin receptor in tilapia. Gen Comp Endocrinol 207:74–85

    CAS  PubMed  Google Scholar 

  • Tang Y, Yu J, Li H, Xu P, Li J, Ren H (2013) Molecular cloning, characterization and expression analysis of multiple leptin genes in Jian carp (Cyprinus carpio var. Jian). Comp. Biochem. Physiol. B Biochem. Mol Biol 166:133–140

    CAS  Google Scholar 

  • Tinoco AB, Nisembaum LG, Isorna E, Delgado MJ, de Pedro N (2012) Leptins and leptin receptor expression in the goldfish (Carassius auratus). Regulation by food intake and fasting/overfeeding conditions. Peptides 34:329–335

    CAS  PubMed  Google Scholar 

  • Trombley S, Schmitz M (2013) Leptin in fish: possible role in sexual maturation in male Atlantic salmon. Fish Physiol Biochem 39:103–106

    CAS  PubMed  Google Scholar 

  • Trombley S, Mustafa A, Schmitz M (2014) Regulation of the seasonal leptin and leptin receptor expression profile during early sexual maturation and feed restriction in male Atlantic salmon, Salmo salar L., parr. Gen Comp Endocrinol 204:60–70

    CAS  PubMed  Google Scholar 

  • van de Pol I, Flik G, Gorissen M (2017) Comparative physiology of energy metabolism: fishing for endocrine signals in the early vertebrate pool. Front Endocrinol (Lausanne) 8:36

    Google Scholar 

  • Wang B, Liu Q, Liu X, Xu Y, Shi B (2017) Molecular characterization of Kiss2 receptor and in vitro effects of Kiss2 on reproduction-related gene expression in the hypothalamus of half-smooth tongue sole (Cynoglossus semilaevis). Gen Comp Endocrinol 249:55–63

    CAS  PubMed  Google Scholar 

  • Wang B, Liu Q, Liu X, Xu Y, Shi B (2018) Molecular characterization and expression profiles of LPXRFa at the brain-pituitary-gonad axis of half-smooth tongue sole (Cynoglossus semilaevis) during ovarian maturation. Comp Biochem Physiol B Biochem Mol Biol 216:59–68

    CAS  PubMed  Google Scholar 

  • Wang B, Zhang Y, Xu Y, Liu X, Cui A, Shi B, Jiang Y (2019) Developmental expression of LPXRFa, kisspeptin and their receptor mRNAs in the half-smooth tongue sole Cynoglossus semilaevis. Fish Sci 85:449–455

    CAS  Google Scholar 

  • Won ET, Baltzegar DA, Picha ME, Borski RJ (2012) Cloning and characterization of leptin in a Perciform fish, the striped bass (Morone saxatilis): control of feeding and regulation by nutritional state. Gen Comp Endocrinol 178:98–107

    CAS  PubMed  Google Scholar 

  • Xu Y, Wang B, Liu X, Shi B, Zang K (2017) Evidences for involvement of growth hormone and insulin-like growth factor in ovarian development of starry flounder (Platichthys stellatus). Fish Physiol Biochem 43:527–537

    CAS  PubMed  Google Scholar 

  • Xu Y, Zhang Y, Wang B, Liu X, Liu Q, Song X, Shi B, Ren K (2018) Leptin and leptin receptor genes in tongue sole (Cynoglossus semilaevis): molecular cloning, tissue distribution and differential regulation of these genes by sex steroids. Comp Biochem Physiol A Mol Integr Physiol 224:11–22

    CAS  PubMed  Google Scholar 

  • Yan AF, Chen T, Chen S, Ren CH, Hu CQ, Cai YM, Liu F, Tang DS (2016) Goldfish leptin-AI and leptin-AII: function and central mechanism in feeding control. Int J Mol Sci 17:783

    PubMed Central  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    CAS  PubMed  Google Scholar 

  • Zhang H, Chen H, Zhang Y, Li S, Lu D, Zhang H, Meng Z, Liu X, Lin H (2013) Molecular cloning, characterization and expression profiles of multiple leptin genes and a leptin receptor gene in orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 181:295–305

    CAS  PubMed  Google Scholar 

  • Zhang H, Qin G, Zhang Y, Li S, Lin Q (2016) The leptin system and its expression at different nutritional and pregnant stages in lined seahorse (Hippocampus erectus). Biol Open 5:1508–1515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Zeng C, Yi S, Wan S, Chen B, Gao Z (2015) Leptin genes in blunt snout bream: cloning, phylogeny and expression correlated to gonads development. Int J Mol Sci 16:27609–27624

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants financially by the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (2018SDKJ0303-1, 2018SDKJ0501-2), Key R&D Program of Shandong Province (2018GHY115044), Central Public-interest Scientific Institution Basal Research Fund, CAFS (2019GH15, 2019CY0204), Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, China (FREU2017-03), and China Agriculture Research System (CARS-47).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjiang Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Cui, A., Wang, P. et al. Temporal expression profiles of leptin and its receptor genes during early development and ovarian maturation of Cynoglossus semilaevis. Fish Physiol Biochem 46, 359–370 (2020). https://doi.org/10.1007/s10695-019-00722-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-019-00722-6

Keywords

Navigation