Skip to main content
Log in

Effects of chronic high stocking density on liver proteome of rainbow trout (Oncorhynchus mykiss)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The main aim of the present study was to assess the effects of chronic high stocking density on liver proteome of rainbow trout. Rainbow trout juveniles (42.6 ± 2.3 g average body weight) were randomly distributed into six tanks at two stocking densities (low stocking density (LD) = 20 kg m−3 and high stocking density (HD) = 80 kg m−3). Both treatments were performed in triplicate tanks for a period of 60 days. High stocking density caused a reduction in the growth performance compared with LD fish. Lysozyme activity increased with stocking density, while serum complement activity presented the opposite pattern. Serum cortisol and total protein levels did not show significant differences (P > 0.05) between experimental groups. The fish reared at high stocking density showed significantly lower osmolality and globulin values but higher albumin level. The HD group had significantly higher activities of catalase, glutathione peroxidase and superoxide dismutase, and malondialdehyde content in the liver when compared to the LD group. Comparative proteomics was used to determine the proteomic responses in livers of rainbow trout reared at high stocking density for 60 days. Out of nine protein spots showing altered abundance (>1.5-folds, P < 0.05), eight spots were successfully identified. Two proteins including apolipoprotein A-I-2 precursor and mitochondrial stress-70 protein were found to increase in HD group. The spots found to decrease in the HD group were identified as follows: 2-peptidylprolyl isomerase A, two isoforms of glyceraldehydes-3-phosphate dehydrogenase, an unnamed protein product similar to fructose-bisphosphate aldolase, 78 kDa glucose-regulated protein, and serum albumin 1 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Aksakal E, Ekinci D, Erdoğan O, Beydemir Ş, Alım Z, Ceyhun SB (2011) Increasing stocking density causes inhibition of metabolic–antioxidant enzymes and elevates mRNA levels of heat shock protein 70 in rainbow trout. Livest Sci 141:69–75. doi:10.1016/j.livsci.2011.07.006

    Article  Google Scholar 

  • Alves RN et al (2010) Metabolic molecular indicators of chronic stress in gilthead seabream (Sparus aurata) using comparative proteomics. Aquaculture 299:57–66

    Article  CAS  Google Scholar 

  • Andrade T et al (2015) Evaluation of different stocking densities in a Senegalese sole (Solea senegalensis) farm: implications for growth, humoral immune parameters and oxidative status. Aquaculture 438:6–11

    Article  CAS  Google Scholar 

  • Babaheydari SB, Keyvanshokooh S, Dorafshan S, Johari SA (2016) Proteomic analysis of skeletal deformity in diploid and triploid rainbow trout (Oncorhynchus mykiss) larvae. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 19:1–7. doi:10.1016/j.cbd.2016.05.001

    CAS  Google Scholar 

  • Bagley MJ, Bentley B, Gall GA (1994) A genetic evaluation of the influence of stocking density on the early growth of rainbow trout (Oncorhynchus mykiss). Aquaculture 121:313–326

    Article  Google Scholar 

  • Barton BA, Iwama GK (1991) Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu Rev Fish Dis 1:3–26

    Article  Google Scholar 

  • Boujard T, Labbé L, Aupérin B (2002) Feeding behaviour, energy expenditure and growth of rainbow trout in relation to stocking density and food accessibility. Aquac Res 33:1233–1242

    Article  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 Find this article online

    Article  CAS  PubMed  Google Scholar 

  • Braunbeck T, Görge G, Storch V, Nagel R (1990) Hepatic steatosis in zebra fish (Brachydanio rerio) induced by long-term exposure to γ-hexachlorocyclohexane. Ecotoxicol Environ Saf 19:355–374

    Article  CAS  PubMed  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  • Bunglavan S, Garg A, Dass R, Shrivastava S (2014) Effect of supplementation of different levels of selenium as nanoparticles/sodium selenite on blood biochemical profile and humoral immunity in male Wistar rats. Veterinary World 7:1075–1081

    Article  Google Scholar 

  • Candiano G et al (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333

    Article  CAS  PubMed  Google Scholar 

  • Chipman DM, Sharon N (1969) Mechanism of lysozyme action. Science 165:454–465

    Article  CAS  PubMed  Google Scholar 

  • Cordero H, Morcillo P, Cuesta A, Brinchmann MF, Esteban MA (2016) Differential proteome profile of skin mucus of gilthead seabream (Sparus aurata) after probiotic intake and/or overcrowding stress. J Proteome 132:41–50

    Article  CAS  Google Scholar 

  • Demers NE, Bayne CJ (1997) The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Developmental & Comparative Immunology 21:363–373

    Article  CAS  Google Scholar 

  • Eckert R, Randall DJ, Burggren WW, French K (1997) Eckert animal physiology: mechanisms and adaptations. New York: WH Freeman and Company

  • Ellis T, North B, Scott A, Bromage N, Porter M, Gadd D (2002) The relationships between stocking density and welfare in farmed rainbow trout. J Fish Biol 61:493–531

    Article  Google Scholar 

  • Farber SA et al (2001) Genetic analysis of digestive physiology using fluorescent phospholipid reporters. Science 292:1385–1388

    Article  CAS  PubMed  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  CAS  PubMed  Google Scholar 

  • Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79:425–449

    CAS  PubMed  Google Scholar 

  • Ghaedi G, Falahatkar B, Yavari V, Sheibani MT, Broujeni GN (2015) The onset of stress response in rainbow trout Oncorhynchus mykiss embryos subjected to density and handling. Fish Physiol Biochem 41:485–493

    Article  CAS  PubMed  Google Scholar 

  • Gornati R, Papis E, Rimoldi S, Terova G, Saroglia M, Bernardini G (2004) Rearing density influences the expression of stress-related genes in sea bass (Dicentrarchus labrax, L.) Gene 341:111–118

    Article  CAS  PubMed  Google Scholar 

  • Göthel S, Marahiel M (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cellular and Molecular Life Sciences CMLS 55:423–436

    Article  PubMed  Google Scholar 

  • Howarth DL, Yin C, Yeh K, Sadler KC (2013) Defining hepatic dysfunction parameters in two models of fatty liver disease in zebrafish larvae. Zebrafish 10:199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji C, Wu H, Wei L, Zhao J, Wang Q, Lu H (2013) Responses of Mytilus galloprovincialis to bacterial challenges by metabolomics and proteomics. Fish & shellfish immunology 35:489–498

    Article  CAS  Google Scholar 

  • Kebus MJ, Collins M, Brownfield M, Amundson C, Kayes T, Malison J (1992) Effects of rearing density on the stress response and growth of rainbow trout. J Aquat Anim Health 4:1–6

    Article  Google Scholar 

  • Kjartansson H, Fivelstad S, Thomassen JM, Smith MJ (1988) Effects of different stocking densities on physiological parameters and growth of adult Atlantic salmon (Salmo salar L.) reared in circular tanks. Aquaculture 73:261–274

    Article  Google Scholar 

  • Küçükbay F, Yazlak H, Karaca I, Sahin N, Tuzcu M, Cakmak M, Sahin K (2009) The effects of dietary organic or inorganic selenium in rainbow trout (Oncorhynchus mykiss) under crowding conditions. Aquac Nutr 15:569–576

    Article  Google Scholar 

  • Laursen DC, Larsen BK, Skov PV, Höglund E (2015) Improved growth performance in rainbow trout Oncorhynchus mykiss reared at high densities is linked to increased energy retention. Aquaculture 442:69–73. doi:10.1016/j.aquaculture.2015.02.035

    Article  Google Scholar 

  • Laursen DC, Silva PIM, Larsen BK, Höglund E (2013) High oxygen consumption rates and scale loss indicate elevated aggressive behaviour at low rearing density, while elevated brain serotonergic activity suggests chronic stress at high rearing densities in farmed rainbow trout. Physiol Behav 122:147–154. doi:10.1016/j.physbeh.2013.08.026

    Article  CAS  PubMed  Google Scholar 

  • Leatherland J (1993) Stocking density and cohort sampling effects on endocrine interactions in rainbow trout. Aquac Int 1:137–156

    Article  Google Scholar 

  • Leatherland J, Cho C (1985) Effect of rearing density on thyroid and interrenal gland activity and plasma and hepatic metabolite levels in rainbow trout, Salmo gairdneri Richardson. J Fish Biol 27:583–592

    Article  CAS  Google Scholar 

  • Li C-J, Gan F, Chen X-H, Liu Z-G, Li L-X, Wei Q-W, Tang Y-K (2011) Molecular and expression analysis of apolipoprotein E gene in the Chinese sturgeon, Acipenser sinensis. Comp Biochem Physiol B: Biochem Mol Biol 158:64–70

    Article  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  • McKenzie DJ, Höglund E, Dupont-Prinet A, Larsen BK, Skov PV, Pedersen PB, Jokumsen A (2012) Effects of stocking density and sustained aerobic exercise on growth, energetics and welfare of rainbow trout. Aquaculture 338:216–222

    Article  Google Scholar 

  • Ming J-H, Ye J-Y, Zhang Y-X, Xu P, Xie J (2015) Effects of dietary reduced glutathione on growth performance, non-specific immunity, antioxidant capacity and expression levels of IGF-I and HSP70 mRNA of grass carp (Ctenopharyngodon idella). Aquaculture 438:39–46

    Article  CAS  Google Scholar 

  • Müller-Eberhard HJ (1988) Molecular organization and function of the complement system. Annu Rev Biochem 57:321–347

    Article  PubMed  Google Scholar 

  • Ni M, Wen H, Li J, Chi M, Ren Y, Song Z, Ding H (2014) Two HSPs gene from juvenile Amur sturgeon (Acipenser schrenckii): cloning, characterization and expression pattern to crowding and hypoxia stress. Fish Physiol Biochem 40:1801–1816

    Article  CAS  PubMed  Google Scholar 

  • Noël ES, dos Reis M, Arain Z, Ober EA (2010) Analysis of the albumin/α-fetoprotein/Afamin/group specific component gene family in the context of zebrafish liver differentiation. Gene Expr Patterns 10:237–243

    Article  PubMed  Google Scholar 

  • Noguchi T, Cantor AH, Scott ML (1973) Mode of action of selenium and vitamin E in prevention of exudative diathesis in chicks. J Nutr 103:1502–1511

    CAS  PubMed  Google Scholar 

  • North BP, Turnbull JF, Ellis T, Porter MJ, Migaud H, Bron J, Bromage NR (2006) The impact of stocking density on the welfare of rainbow trout (Oncorhynchus mykiss). Aquaculture 255:466–479. doi:10.1016/j.aquaculture.2006.01.004

    Article  Google Scholar 

  • Ortuno J, Esteban M, Meseguer J (2001) Effects of short-term crowding stress on the gilthead seabream (Sparus aurata L.) innate immune response. Fish & Shellfish Immunology 11:187–197

    Article  CAS  Google Scholar 

  • Ortuño J, Esteban M, Meseguer J (2003) The effect of dietary intake of vitamins C and E on the stress response of gilthead seabream (Sparus aurata L.) Fish & shellfish immunology 14:145–156

    Article  Google Scholar 

  • Peng X-X (2013) Proteomics and its applications to aquaculture in China: infection, immunity, and interaction of aquaculture hosts with pathogens. Developmental & Comparative Immunology 39:63–71

    Article  CAS  Google Scholar 

  • Pickering A, Pottinger T (1987) Crowding causes prolonged leucopenia in salmonid fish, despite interrenal acclimation. J Fish Biol 30:701–712

    Article  Google Scholar 

  • Pickering A, Pottinger T, Sumpter J, Carragher J, Le Bail P (1991) Effects of acute and chronic stress on the levels of circulating growth hormone in the rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol 83:86–93

    Article  CAS  PubMed  Google Scholar 

  • Procarione LS, Barry TP, Malison JA (1999) Effects of high rearing densities and loading rates on the growth and stress responses of juvenile rainbow trout. N Am J Aquac 61:91–96

    Article  Google Scholar 

  • Rodrigues PM, Silva TS, Dias J, Jessen F (2012) Proteomics in aquaculture: applications and trends. J Proteome 75:4325–4345

    Article  CAS  Google Scholar 

  • Salas-Leiton E et al (2010) Effects of stocking density and feed ration on growth and gene expression in the Senegalese sole (Solea senegalensis): potential effects on the immune response. Fish & shellfish immunology 28:296–302

    Article  CAS  Google Scholar 

  • Santos G, Schrama J, Mamauag R, Rombout J, Verreth J (2010) Chronic stress impairs performance, energy metabolism and welfare indicators in European seabass (Dicentrarchus labrax): the combined effects of fish crowding and water quality deterioration. Aquaculture 299:73–80

    Article  Google Scholar 

  • Soderberg RW, Meade JW (1987) Effects of rearing density on growth, survival, and fin condition of Atlantic salmon. The Progressive Fish-Culturist 49:280–283

    Article  Google Scholar 

  • Suárez M et al (2015) Interaction of dietary energy levels and culture density on growth performance and metabolic and oxidative status of rainbow trout (Oncorhynchus mykiss). Aquac Eng 67:59–66

    Article  Google Scholar 

  • Sung YY, MacRae TH, Sorgeloos P, Bossier P (2011) Stress response for disease control in aquaculture. Rev Aquac 3:120–137

    Article  Google Scholar 

  • Sunyer JO, Tort L (1995) Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are effected by the alternative complement pathway. Vet Immunol Immunopathol 45:333–345

    Article  CAS  PubMed  Google Scholar 

  • Terova G, Gornati R, Rimoldi S, Bernardini G, Saroglia M (2005) Quantification of a glucocorticoid receptor in sea bass (Dicentrarchus labrax, L.) reared at high stocking density. Gene 357:144–151

    Article  CAS  PubMed  Google Scholar 

  • Trenzado CE, de la Higuera M, Morales AE (2007) Influence of dietary vitamins E and C and HUFA on rainbow trout (Oncorhynchus mykiss) performance under crowding conditions. Aquaculture 263:249–258

    Article  CAS  Google Scholar 

  • Trenzado CE, Morales AE, de la Higuera M (2006) Physiological effects of crowding in rainbow trout, Oncorhynchus mykiss, selected for low and high stress responsiveness. Aquaculture 258:583–593

    Article  Google Scholar 

  • Trenzado CE, Morales AE, Palma JM, de la Higuera M (2009) Blood antioxidant defenses and hematological adjustments in crowded/uncrowded rainbow trout (Oncorhynchus mykiss) fed on diets with different levels of antioxidant vitamins and HUFA. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 149:440–447

    Google Scholar 

  • Vazzana M, Cammarata M, Cooper E, Parrinello N (2002) Confinement stress in sea bass (Dicentrarchus labrax) depresses peritoneal leukocyte cytotoxicity. Aquaculture 210:231–243

    Article  CAS  Google Scholar 

  • Veiseth-Kent E, Grove H, Færgestad EM, Fjæra SO (2010) Changes in muscle and blood plasma proteomes of Atlantic salmon (Salmo salar) induced by crowding. Aquaculture 309:272–279. doi:10.1016/j.aquaculture.2010.09.028

    Article  CAS  Google Scholar 

  • Yarahmadi P, Miandare HK, Fayaz S, Caipang CMA (2016) Increased stocking density causes changes in expression of selected stress-and immune-related genes, humoral innate immune parameters and stress responses of rainbow trout (Oncorhynchus mykiss). Fish & shellfish immunology 48:43–53

    Article  CAS  Google Scholar 

  • Yeh S-P, Chang C-A, Chang C-Y, Liu C-H, Cheng W (2008) Dietary sodium alginate administration affects fingerling growth and resistance to Streptococcus sp. and iridovirus, and juvenile non-specific immune responses of the orange-spotted grouper, Epinephelus coioides. Fish & shellfish immunology 25:19–27

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Khorramshahr University of Marine Science and Technology for supporting this work under research grant contract no. 145.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Keyvanshokooh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, M., Keyvanshokooh, S., Salati, A.P. et al. Effects of chronic high stocking density on liver proteome of rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 43, 1373–1385 (2017). https://doi.org/10.1007/s10695-017-0378-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-017-0378-8

Keywords

Navigation