Skip to main content
Log in

Characterization of a vasa homolog in the brown-marbled grouper (Epinephelus fuscoguttatus) and its expression in gonad and germ cells during larval development

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The vasa gene is specifically expressed in the germ cell lineage, and its expression has been used to study germline development in many organisms, including fishes. In this study, we cloned and characterized vasa as Efu-vasa in the brown-marbled grouper (Epinephelus fuscoguttatus). Efu-vasa contained predicted regions that shared consensus motifs with the vasa family in teleosts, including arginine- and glycine-rich repeats, ATPase motifs, and a DEAD box. Phylogenetic-tree construction using various DEAD-box proteins confirmed that Efu-vasa was clustered in the vasa family. Efu-vasa mRNA was detectable only in gonads, by reverse transcription polymerase chain reaction. Primordial germ cells (PGCs) during early gonad development in larvae were characterized by histological examination and in situ hybridization using an Efu-vasa antisense probe. Migrating PGCs were found in larvae at 9–21 days post-hatching, and rapid proliferation of PGCs was initiated in 36 days post-hatching. These findings provide a valuable basis for optimizing the developmental stages for germ cell transplantation in order to produce surrogate broodstock, which may help in the production of larvae of large and endangered grouper species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Blázquez M, González A, Mylonas CC, Piferrer F (2011) Cloning and sequence analysis of a vasa homolog in the European sea bass (Dicentrarchus labrax): tissue distribution and mRNA expression levels during early development and sex differentiation. Gen Comp Endocrinol 170:322–333. doi:10.1016/j.ygcen.2010.10.007

    Article  PubMed  Google Scholar 

  • Braat AK, Zandbergen T, van de Water S, Goos HJT, Zivkovic D (1999) Characterization of zebrafish primordial germ cells: morphology and early distribution of vasa RNA. Dev Dyn 216:153–167. doi:10.1002/(SICI)1097-0177(199910)216:2<153:AID-DVDY6>3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  • Cao M, Yang Y, Xu H, Duan J, Cheng N, Wang J, Hu W, Zhao H (2012) Germ cell specific expression of Vasa in rare minnow, Gobiocypris rarus. Comp Biochem Physiol A 162:163–170. doi:10.1016/j.cbpa.2012.02.007

    Article  CAS  Google Scholar 

  • Castrillon DH, Quade BJ, Wang TY, Quigley C, Crum CP (2000) The human VASA gene is specifically expressed in the germ cell lineage. Proc Natl Acad Sci USA 97:9585–9590. doi:10.1073/pnas.160274797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordin O, Banroques J, Tanner NK, Linder P (2006) The DEAD-box protein family of RNA helicases. Gene 367:17–37. doi:10.1016/j.gene.2005.10.019

    Article  CAS  PubMed  Google Scholar 

  • De Felici M (2013) Origin, migration, and proliferation of human primordial germ cells. In: Coticchio G, Albertini DF, De Dantis L (eds) Oogenesis. Springer, London, pp 19–37

    Chapter  Google Scholar 

  • Farlora R, Hattori-Ihara S, Takeuchi Y, Hayashi M, Octavera A, Alimuddin Yoshizaki G (2014) Intraperitoneal Germ Cell Transplantation in the Nile Tilapia Oreochromis niloticus. Mar Biotechnol 16:309–320. doi:10.1007/s10126-013-9551-y

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara Y, Komiya T, Kawabata H, Sato M, Fujimoto H, Furusawa M, Noce T (1994) Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc Natl Acad Sci USA 91:12258–12262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harikrishnan R, Balasundaram C, Heo M-S (2011) Fish health aspects in grouper aquaculture. Aquaculture 320:1–21. doi:10.1016/j.aquaculture.2011.07.022

    Article  Google Scholar 

  • Hatakeyama R, Shirafuji N, Nishimura D, Kawamura T, Watanabe Y (2005) Gonadal development in early life stages of Spratelloides gracilis. Fish Sci 71:1201–1208. doi:10.1111/j.1444-2906.2005.01084.x

    Article  CAS  Google Scholar 

  • Hay B, Jan LY, Jan YN (1988) A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55:577–587. doi:10.1016/0092-8674(88)90216-4

    Article  CAS  PubMed  Google Scholar 

  • Hendry CI, Martin-Robichaud DJ, Benfey TJ (2002) Gonadal sex differentiation in Atlantic halibut. J Fish Biol 60:1431–1442. doi:10.1006/jfbi.2002.1950

    Article  Google Scholar 

  • Higuchi K, Takeuchi Y, Miwa M, Yamamoto Y, Tsunemoto K, Yoshizaki G (2011) Colonization, proliferation, and survival of intraperitoneally transplanted yellowtail Seriola quinqueradiata spermatogonia in nibe croaker Nibea mitsukurii recipient. Fish Sci 77:69–77. doi:10.1007/s12562-010-0314-7

    Article  CAS  Google Scholar 

  • Huang J, Chen S, Liu Y, Shao C, Lin F, Wang N, Hu Q (2014) Molecular characterization, sexually dimorphic expression, and functional analysis of 3′-untranslated region of vasa gene in half-smooth tongue sole (Cynoglossus semilaevis). Theriogenology 82:213–224. doi:10.1016/j.theriogenology.2014.03.017

    Article  CAS  PubMed  Google Scholar 

  • Ismi S, Sutarmat T, Giri NA, Rimmer MA, Knuckey RMJ, Berding AC, Sugama K (2012) Nursery management of grouper: a best-practice manual

  • Jangprai A, Boonanuntanasarn S, Yoshizaki G (2011) Characterization of melanocortin 4 receptor in snakeskin gourami and its expression in relation to daily feed intake and short-term fasting. Gen Comp Endocrinol 173:27–37. doi:10.1016/j.ygcen.2011.04.021

    Article  CAS  PubMed  Google Scholar 

  • Kiledjian M, Dreyfuss G (1992) Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J 11:2655–2664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Kajiura-Kobayashi H, Nagahama Y (2002) Two isoforms of vasa homologs in a teleost fish: their differential expression during germ cell differentiation. Mech Dev 111:167–171. doi:10.1016/S0925-4773(01)00613-X

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Iwasaki Y, Shikina S, Yoshizaki G (2013) Generation of functional eggs and sperm from cryopreserved whole testes. Proc Natl Acad Sci USA 110:1640–1645. doi:10.1073/pnas.1218468110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Hong N, Xu H, Yi M, Li C, Gui J, Hong Y (2009) Medaka vasa is required for migration but not survival of primordial germ cells. Mech Dev 126:366–381. doi:10.1016/j.mod.2009.02.004

    Article  CAS  PubMed  Google Scholar 

  • Li C-J, Liu L, Chen X-H, Zhang T, Gan F, Cheng B-L (2010) Identification of a vasa homologue gene in grass carp and its expression pattern in tissues and during embryogenesis. Comp Biochem Physiol B 157:159–166. doi:10.1016/j.cbpb.2010.05.003

    Article  PubMed  Google Scholar 

  • Liang L, Diehl-Jones W, Lasko P (1994) Localization of vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities. Development 120:1201–1211

    CAS  PubMed  Google Scholar 

  • Linder P, Lasko PF, Ashburner M, Leroy P, Nielsen PJ, Nishi K, Schnier J, Slonimski PP (1989) Birth of the D-E-A-D box. Nature 337:121–122

    Article  CAS  PubMed  Google Scholar 

  • Liu M, de Mitcheson YS (2009) Gonad development during sexual differentiation in hatchery-produced orange-spotted grouper (Epinephelus coioides) and humpback grouper (Cromileptes altivelis) (Pisces: Serranidae, Epinephelinae). Aquaculture 287:191–202. doi:10.1016/j.aquaculture.2008.10.027

    Article  Google Scholar 

  • Liu N, Han H, Lasko P (2009) Vasa promotes Drosophila germline stem cell differentiation by activating mei-P26 translation by directly interacting with a (U)-rich motif in its 3’UTR. Gene Dev 23:2742–2752. doi:10.1101/gad.1820709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita T, Kumakura N, Morishima K, Mitsuboshi T, Ishida M, Hara T, Kudo S, Miwa M, Ihara S, Higuchi K, Takeuchi Y, Yoshizaki G (2012) Production of Donor-Derived Offspring by Allogeneic Transplantation of Spermatogonia in the Yellowtail (Seriola quinqueradiata). Biol Reprod 86(176):171. doi:10.1095/biolreprod.111.097873

    Google Scholar 

  • Morita T, Morishima K, Miwa M, Kumakura N, Kudo S, Ichida K, Mitsuboshi T, Takeuchi Y, Yoshizaki G (2015) Functional Sperm of the Yellowtail (Seriola quinqueradiata) were produced in the small-bodied surrogate, Jack Mackerel (Trachurus japonicus). Mar Biotechnol 17:644–654. doi:10.1007/s10126-015-9657-5

    Article  CAS  PubMed  Google Scholar 

  • Nagasawa K, Takeuchi Y, Miwa M, Higuchi K, Morita T, Mitsuboshi T, Miyaki K, Kadomura K, Yoshizaki G (2009) cDNA cloning and expression analysis of a vasa-like gene in Pacific bluefin tuna Thunnus orientalis. Fish Sci 75:71–79. doi:10.1007/s12562-008-0021-9

    Article  CAS  Google Scholar 

  • Okutsu T, Suzuki K, Takeuchi Y, Takeuchi T, Yoshizaki G (2006) Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc Natl Acad Sci USA 103:2725–2729. doi:10.1073/pnas.0509218103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen LC, Aasland R, Fjose A (1997) A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech Dev 66:95–105. doi:10.1016/S0925-4773(97)00099-3

    Article  CAS  PubMed  Google Scholar 

  • Pacchiarini T, Cross I, Leite RB, Gavaia P, Ortiz-Delgado JB, Pousão-Ferreira P, Rebordinos L, Sarasquete C, Cabrita E (2013) Solea senegalensis vasa transcripts: molecular characterisation, tissue distribution and developmental expression profiles. Rep Fertil Dev 25:646–660. doi:10.1071/RD11240

    Article  CAS  Google Scholar 

  • Patino R, Takashima F (1995) Gonads. In: Takashima F, Hibiya T (eds) An Atlas of fish histology: normal and pathological features. Kodansha, Tokyo, pp 128–153

    Google Scholar 

  • Pause A, Méthot N, Sonenberg N (1993) The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis. Mol Cel Biol 13:6789–6798. doi:10.1128/MCB.13.11.6789

    Article  CAS  Google Scholar 

  • Pomeroy R, Agbayani R, Toledo J, Sugama K, Slamet B, Tridjoko (2002) The status of grouper culture in southeast Asia. In: Pomeroy R, Parks J, Balboa C (eds) Financial feasibility analysis for grouper culture systems in the Philippines and Indonesia. Draft chapter 6 in: farming the Reef: a state-of-the-art review of aquaculture of coral reef organisms in tropical nearshore environments. World Resources Institute, Washington

  • Raghuveer K, Senthilkumaran B (2010) Cloning and differential expression pattern of vasa in the developing and recrudescing gonads of catfish, Clarias gariepinus. Comp Biochem Physiol A 157:79–85. doi:10.1016/j.cbpa.2010.04.017

    Article  Google Scholar 

  • Raz E (2000) The function and regulation of vasa-like genes in germ-cell development. Genome Biol 1:reviews1017.1011–reviews1017.1016. doi: 10.1186/gb-2000-1-3-reviews1017

  • Rocak S, Linder P (2004) DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 5:232–241. doi:10.1038/nrm1335

    Article  CAS  PubMed  Google Scholar 

  • Sabour D, Araúzo-Bravo MJ, Hübner K, Ko K, Greber B, Gentile L, Stehling M, Schöler HR (2011) Identification of genes specific to mouse primordial germ cells through dynamic global gene expression. Hum Mol Gen 20:115–125. doi:10.1093/hmg/ddq450

    Article  CAS  PubMed  Google Scholar 

  • Sadovy de Mitcheson Y, Craig MT, Bertoncini AA, Carpenter KE, Cheung WWL, Choat JH, Cornish AS, Fennessy ST, Ferreira BP, Heemstra PC, Liu M, Myers RF, Pollard DA, Rhodes KL, Rocha LA, Russell BC, Samoilys MA, Sanciangco J (2013) Fishing groupers towards extinction: a global assessment of threats and extinction risks in a billion dollar fishery. Fish Fish 14:119–136. doi:10.1111/j.1467-2979.2011.00455.x

    Article  Google Scholar 

  • Schmid SR, Linder P (1992) D-E-A-D protein family of putative RNA helicases. Mol Microbiol 6:283–292

    Article  CAS  PubMed  Google Scholar 

  • Schupbach T, Wieschaus E (1986) Germline autonomy of maternal-effect mutations altering the embryonic body pattern of Drosophila. Dev Biol 113:443–448. doi:10.1016/0012-1606(86)90179-X

    Article  CAS  PubMed  Google Scholar 

  • Shinomiya A, Tanaka M, Kobayashi T, Nagahama Y, Hamaguchi S (2000) The vasa-like gene, olvas, identifies the migration path of primordial germ cells during embryonic body formation stage in the medaka, Oryzias latipes. Dev Growth Differ 42:317–326. doi:10.1046/j.1440-169x.2000.00521.x

    Article  CAS  PubMed  Google Scholar 

  • Sugama K, Rimmer MA, Ismi S, Koesharyani I, Suwirya K, Giri NA, Alava VR (2012) Hatchery management of tiger grouper (Epinephelus fuscoguttatus): a best-practice manual

  • Takeuchi Y, Yoshizaki G, Takeuchi T (2003) Generation of live fry from intraperitoneally transplanted primordial germ cells in rainbow trout. Biol Reprod 69:1142–1149. doi:10.1095/biolreprod.103.017624

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi Y, Higuchi K, Yatabe T, Miwa M, Yoshizaki G (2009) Development of Spermatogonial Cell Transplantation in Nibe Croaker, Nibea mitsukurii (Perciformes, Sciaenidae). Biol Reprod 81:1055–1063. doi:10.1095/biolreprod.109.077701

    Article  CAS  PubMed  Google Scholar 

  • Tanaka SS, Toyooka Y, Akasu R, Katoh-Fukui Y, Nakahara Y, Suzuki R, Yokoyama M, Noce T (2000) The most homolog of Drosophila Vasa is required for the development of male germ cells. Gene Dev 14:841–853. doi:10.1101/gad.14.7.841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanner NK, Cordin O, Banroques J, Doère M, Linder P (2003) The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol Cell 11:127–138. doi:10.1016/S1097-2765(03)00006-6

    Article  CAS  PubMed  Google Scholar 

  • Úbeda-Manzanaro M, Rebordinos L, Sarasquete C (2014) Cloning and characterization of Vasa gene expression pattern in adults of the Lusitanian toadfish Halobatrachus didactylus. Aquatic Biol 21:37–46. doi:10.3354/ab00565

    Article  Google Scholar 

  • van Winkoop A, Booms GHR, Dulos GJ, Timmermans LPM (1992) Ultrastructural changes in primordial germ cells during early gonadal development of the common carp (Cyprinus carpio L., teleostei). Cell Tissue Res 267:337–346

    Article  Google Scholar 

  • Wu X, Wang Z, Jiang J, Gao J, Wang J, Zhou X, Zhang Q (2014) Cloning, expression promoter analysis of vasa gene in Japanese flounder (Paralichthys olivaceus). Comp Biochem Physiol B 167:41–50. doi:10.1016/j.cbpb.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Gui J, Hong Y (2005) Differential expression of vasa RNA and protein during spermatogenesis and oogenesis in the gibel carp (Carassius auratus gibelio), a bisexually and gynogenetically reproducing vertebrate. Dev Dyn 233:872–882. doi:10.1002/dvdy.20410

    Article  CAS  PubMed  Google Scholar 

  • Yazawa R, Takeuchi Y, Higuchi K, Yatabe T, Kabeya N, Yoshizaki G (2010) Chub mackerel gonads support colonization, survival, and proliferation of intraperitoneally transplanted xenogenic germ cells. Biol Reprod 82:896–904. doi:10.1095/biolreprod.109.081281

    Article  CAS  PubMed  Google Scholar 

  • Ye D, Lv D, Song P, Peng M, Chen Y, Guo M, Yang Q, Hu Y (2007) Cloning and characterization of a rice field eel vasa-Like gene cDNA and its expression in gonads during natural sex transformation. Biochem Genet 45:211–224. doi:10.1007/s10528-006-9066-6

    Article  CAS  PubMed  Google Scholar 

  • Yoshizaki G, Sakatani S, Tominaga H, Takeuchi T (2000) Cloning and characterization of a vasa-like gene in rainbow trout and its expression in the germ cell lineage. Mol Reprod Dev 55:364–371. doi:10.1002/(SICI)1098-2795(200004)55:4<364:AID-MRD2>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  • Yoshizaki G, Takeuchi Y, Kobayashi T, Ihara S, Takeuchi T (2002) Primordial germ cells: the blueprint for a piscine life. Fish Physiol Biochem 26:3–12

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Suranaree University of Technology, the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, and the project “Development of Aquaculture Technology for Food Security and Food Safety in the Next Generation” under the Japan Science and Technology Agency (JST) and the Japan International Cooperation Agency (JICA) joint program of Science and Technology Research Partnership for Sustainable Development (SATREPS). We acknowledge Mrs. Amphai Longloy and Mr. Nipon Seanin for their assistance in collecting the specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surintorn Boonanuntanasarn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boonanuntanasarn, S., Bunlipatanon, P., Ichida, K. et al. Characterization of a vasa homolog in the brown-marbled grouper (Epinephelus fuscoguttatus) and its expression in gonad and germ cells during larval development. Fish Physiol Biochem 42, 1621–1636 (2016). https://doi.org/10.1007/s10695-016-0245-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0245-z

Keywords

Navigation