Skip to main content
Log in

Freshwater catfish jundiá (Rhamdia quelen) larvae are prepared to digest inert feed at the exogenous feeding onset: physiological and histological assessments

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This study assessed the morphological development of jundiá larvae’s digestive system and digestive proteolytic activity. Specific serine proteinases activities varied over time, with the highest peak at 12 h after hatching (AH), which corresponded to 296.38 ± 84.20 mU mg−1 for trypsin and 315.45 ± 42.16 mU mg−1 for chymotrypsin. Specific aspartic proteinases activities increased up to the start of weaning, oscillated during that phase, but showed a consistent increase after that, resulting in the highest specific activity at 252 h AH (7.88 ± 0.68 mU mg−1). Gel assays showed different molecular forms, especially of serine proteinases. Histology showed the gastrointestinal tract development onset at 0 h AH and open mouth at 4 h AH. At 16 h AH, the following differentiation of the digestive tract was evident: oropharyngeal cavity, esophagus, liver, pancreas, stomach, and intestine. At 40 h AH, zymogen granules in the pancreas were observed, and at 48 h AH, mucus in the digestive tract and gastric glands in the stomach. Findings indicate that jundiá has a functional stomach before the end of vitelline reserves. Therefore, jundiá larvae are probably capable to digest inert feed at the exogenous feeding onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alarcón FJ, Diaz M, Moyano FJ (1997) Studies on digestive enzymes in fish: Characterization and practical applications. In: Tacon AGJ, Basurco B (eds) Feeding tomorrow’s fish: proceedings of the workshop of the CIHEAM. Centre International de Hautes Etudes Agronomiques Méditerranéennes, FAO, Instituto Español de Oceanografia, Zaragoza, pp 113–121

  • Anson ML (1938) The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol 22:79–89

    Article  PubMed  CAS  Google Scholar 

  • Association of official analytical chemists (AOAC) (1999) Official methods of analysis, 16th edn. Washington, DC

    Google Scholar 

  • Behr ER, Tronco AP, Radünz Neto J (2000) Ação do tempo e da forma de suplementação alimentar com Artemia franciscana sobre a sobrevivência e o crescimento de larvas de jundiá. Cienc Rural 30:503–507

    Article  Google Scholar 

  • Campos FAP, Xavier J, Silva CP, Ary MB (1989) Resolution and partial characterization of proteinases and alpha-amylases from midguts of larvae of the bruchid beetle Callosobruchus maculatus (F). Comp Biochem Phys B 92:51–57

    Google Scholar 

  • Cargnin-Ferreira E, Sarasquete Reiriz C (2008) Histofisiología de moluscos bivalvos marinos. CSIC, Madrid

    Google Scholar 

  • Carnevali O, Mosconi G, Cambi A, Ridolfi S, Zanuy S, Polzonetti-Magni AM (2001) Changes of lysosomal enzyme activities in sea bass (Dicentrarchus labrax) eggs and developing embryos. Aquaculture 202:249–256

    Article  CAS  Google Scholar 

  • Clark J, Murray KR, Stark JR (1986) Protease development in dover sole [Solea solea (L)]. Aquaculture 53:253–262

    Article  CAS  Google Scholar 

  • Dabrowski K (1984) The feeding of fish larvae—present state of the art and perspectives. Reprod Nutr Dev 24:807–833

    Article  Google Scholar 

  • Dabrowski K (1989) Ontogenetic changes in the fish larval gut. In: Harvey B, Carolsfeld J (eds) Encontro de Larvicultura. Canadian International Development Agency (ICSU), Pirassununga, SP, p 167

    Google Scholar 

  • Del Mar E, Largman C, Brodrick J, Geokas M (1979) A sensitive new substrate for chymotrypsin. Anal Biochem 99:316–320

    Article  Google Scholar 

  • Erlanger BF, Cohen W, Kokowsky N (1961) Preparation and properties of 2 new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278

    Article  PubMed  CAS  Google Scholar 

  • Fernández I, Moyano FJ, Díaz M, Martínez T (2001) Characterization of α-amylase activity in five species of mediterranean sparid fishes (Sparidae, Teleostei). J Exp Mar Biol Ecol 262:1–12

    Article  Google Scholar 

  • Fracalossi DM, Moro GV, Yasumaru FA (2007) Jundiá catfish farming in Southern Brazil. Glob Aquac Advocate 10:68–70

    Google Scholar 

  • Gawlicka A, Parent B, Horn MH, Ross N, Opstad I, Torrissen OJ (2000) Activity of digestive enzymes in yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus): indication of readiness for first feeding. Aquaculture 184:303–314

    Article  CAS  Google Scholar 

  • Gisbert E, Gimenez G, Fernandez I, Kotzamanis Y, Estevez A (2009) Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture 287:381–387

    Article  CAS  Google Scholar 

  • Guerreiro I, de Vareilles M, Pousao-Ferreira P, Rodrigues V, Dinis MT, Ribeiro L (2010) Effect of age-at-weaning on digestive capacity of white seabream (Diplodus sargus). Aquaculture 300:194–205

    Article  Google Scholar 

  • Kamarudin MS, Otoi S, Saad CR (2011) Changes in growth, survival and digestive enzyme activities of Asian redtail catfish, Mystus nemurus, larvae fed on different diets. Afr J Biotechnol 10:4484–4493

    CAS  Google Scholar 

  • Kawai SI, Ikeda S (1973) Studies on digestive enzymes of fishes.3. Development of digestive enzymes of rainbow trout after hatching and effect of dietary change on activities of digestive enzymes in juvenile stage. B Jpn Soc Sci Fish 39:819–823

    Article  CAS  Google Scholar 

  • Kolkovski S (2001) Digestive enzymes in fish larvae and juveniles—implications and applications to formulated diets. Aquaculture 200:181–201

    Article  CAS  Google Scholar 

  • Kuzmina VV (1996) Influence of age on digestive enzyme activity in some freshwater teleosts. Aquaculture 148:25–37

    Article  CAS  Google Scholar 

  • Lazo JP, Mendoza R, Holt GJ, Aguilera C, Arnold CR (2007) Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture 265:194–205

    Article  CAS  Google Scholar 

  • Lillie RD, Conn HJ (1977) H. J. Conn’s Biological Stains: a handbook on the nature and uses of the dyes employed in the biological laboratory, 9th edn. The Williams & Wilkins, Baltimore

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Mallory KB (1968) Pathological technique: a practical manual for workers in pathological histology and bacteriology. Hafner, New York

    Google Scholar 

  • Martoja R, Martoja-Pierson M, Grassé PP, Estartús Moncanut M, Durfort Coll M (1970) Técnicas de histología animal. Toray-Masson, Barcelona

    Google Scholar 

  • National Research Council (NRC) (U.S.). Committee on Animal Nutrition (1993) Nutrient requirements of fish. National Academy Press, Washington, DC

    Google Scholar 

  • Piaia R, Radünz Neto J (1997) Avaliação de diferentes fontes proteicas sobre o desempenho inicial de larvas de jundiá (Rhamdia quelen). Cienc Rural 27:319–323

    Article  Google Scholar 

  • Ribeiro L, Zambonino-Infante JL, Cahu C, Dinis MT (1999) Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture 179:465–473

    Article  CAS  Google Scholar 

  • Segner H, Rösch R, Verreth J, Witt U (1993) Larval nutrition physiology: studies with Clarias gariepinus, Coregonus lavaretus and Scophtalmus maximus. J World Aquacult Soc 24:121–134

    Article  Google Scholar 

  • Silva LVF (2004) Incubação e larvicultura. In: Baldisserotto B, Radünz Neto J (eds) Criação de Jundiá. Editora UFSM, Santa Maria, pp 107–116

  • Silva CP, Terra WR, Lima RM (2001) Differences in midgut serine proteinases from larvae cf the bruchid beetles Callosobruchus maculatus and Zabrotes subfasciatus. Arch Insect Biochem 47:18–28

    Article  CAS  Google Scholar 

  • Suzer C, Aktulun S, Coban D, Kamaci HO, Saka S, Firat K, Alpbaz A (2007) Digestive enzyme activities in larvae of sharpsnout seabream (Diplodus puntazzo). Comp Biochem Phys A 148:470–477

    Google Scholar 

  • Tacon AGJ (1990) Standard methods for the nutrition and feeding of farmed fish and shrimp. Argent Laboratories Press, Redmon, Washington, DC

  • Vega-Orellana OM, Fracalossi DM, Sugai JK (2006) Dourado (Salminus brasiliensis) larviculture: weaning and ontogenetic development of digestive proteinases. Aquaculture 252:484–493

    Article  Google Scholar 

  • Vega-Villasante F, Nolasco H, Civera R (1995) The digestive enzymes of the pacific brown shrimp Penaeus californiensis—II. Properties of proteinase activity in the whole digestive tract. Comp Biochem Phys B 1:123–129

    Article  Google Scholar 

  • Verreth J, Torreele E, Spazier E, Der Sluiszen AV (1992) The development of a functional digestive system in the African catfish, Clarias gariepinus (Burchell) larvae. J World Aquacult Soc 23:286–298

    Article  Google Scholar 

  • Walford J, Lam TJ (1992) Development of digestive tract and proteolytic enzyme activity in sea bass (Lates calcarifer) larvae and juveniles. Aquaculture 109:187–205

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Marcos Weingartner for spawning jundiá broodstock. Acknowledgements are also due to REUNI program of the Brazilian Ministry of Education and to the National Council for Scientific and Technological Development (CNPq, Brazil) for the fellowships granted to the first and last authors, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Débora Machado Fracalossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silveira, J., Silva, C.P., Cargnin-Ferreira, E. et al. Freshwater catfish jundiá (Rhamdia quelen) larvae are prepared to digest inert feed at the exogenous feeding onset: physiological and histological assessments. Fish Physiol Biochem 39, 1581–1590 (2013). https://doi.org/10.1007/s10695-013-9810-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-013-9810-x

Keywords

Navigation