Skip to main content
Log in

Channel catfish, Ictalurus punctatus (Rafinesque), tetraspanin membrane protein family: identification, characterization and phylogenetic analysis of tetraspanin 3 and tetraspanin 7 (CD231) transcripts

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Tetraspanins, a large cell surface protein superfamily characterized by having four transmembrane domains, play many critical roles in physiological and pathological processes. In this study, we report the identification, characterization and phylogenetic analysis of the channel catfish tetraspanin 3 and tetraspanin 7 (CD231) transcripts. The full-length nucleotide sequences of tetraspanin 3 and tetraspanin 7 cDNA have 1,453 and 1,842 base pairs, respectively. Analysis of the nucleotide sequences reveals that each has one open reading frame (ORF). The ORF of tetraspanin 3 appears to encode 241 amino acids with calculated molecular mass of 26.8 kDa, while the ORF of tetraspanin 7 potentially encodes 251 amino acids with calculated molecular mass of 27.9 kDa. By comparison with the human counterparts, the channel catfish tetraspanin 3 and tetraspanin 7 peptides have four transmembrane domains, three intracellular domains and two (small and large) extracellular domains. In addition, several characteristic features critical for structure and functions in mammalian tetraspanins are also conserved in channel catfish tetraspanin 3 and tetraspanin 7. The transcripts were detected by RT-PCR in restrictive organs. These results with those from our previous studies on other channel catfish tetraspanins provide important information for further investigating the roles of various tetraspanins in channel catfish infection with microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angelisova P, Hilgert I, Horejsi V (1994) Association of four antigens of the tetraspanin family (CD37, CD53, TAPA-1, and R2/C33) with MHC class II glycoproteins. Immunogenetics 39:249–256

    Article  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol 340:783–795

    Article  Google Scholar 

  • Berditchevski F (2001) Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci 114:4143–4151

    CAS  PubMed  Google Scholar 

  • Berditchevski F, Odintsova E (2007) Tetraspanins as regulators of protein trafficking. Traffic 8:89–96

    Article  CAS  Google Scholar 

  • Boismenu R, Rhein M, Fischer WH, Havran WL (1996) A role for CD81 in early T cell development. Science 271:198–200

    Article  CAS  Google Scholar 

  • Charrin S, le Naour F, Silvie O, Milhiet PE, Boucheix C, Rubinstein E (2009) Lateral organization of membrane proteins: tetraspanins spin their web. Biochem J 420:133–154

    Article  CAS  Google Scholar 

  • Cormier EG, Tsamis F, Kajumo F, Durso RJ, Gardner JP, Dragic T (2004) CD81 is an entry coreceptor for hepatitis C virus. Proc Natl Acad Sci USA 101:7270–7274

    Article  CAS  Google Scholar 

  • Emi N, Kitaori K, Seto M, Ueda R, Saito H, Takahashi T (1993) Isolation of a novel cDNA clone showing marked similarity to ME491/CD63 superfamily. Immunogenetics 37:193–198

    Article  CAS  Google Scholar 

  • Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85:8998–9002

    Article  CAS  Google Scholar 

  • Fujiki K, Gauley J, Bols N, Dixon B (2002) Cloning and characterization of cDNA clones encoding CD9 from Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Immunogenetics 54:604–609

    Article  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, NY, pp 571–607

    Chapter  Google Scholar 

  • Gui L, Wang B, Li FH, Sun YM, Luo Z, Xiang JH (2012) Blocking the large extracellular loop (LEL) domain of FcTetraspanin-3 could inhibit the infection of white spot syndrome virus (WSSV) in Chinese shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol. doi:10.1016/j.fsi.2012.02.022

    Article  CAS  Google Scholar 

  • Guo M, Huang T, Cui Y, Pan B, Shen A, Sun Y, Yi Y, Wang Y, Xiao G, Sun G (2008) PrPC interacts with tetraspanin-7 through bovine PrP154-182 containing alpha-helix 1. Biochem Biophys Res Commun 365:154–157

    Article  CAS  Google Scholar 

  • Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6:801–811

    Article  CAS  Google Scholar 

  • Hemler ME (2008) Targeting of tetraspanin proteins–potential benefits and strategies. Nat Rev Drug Discov 7:747–758

    Article  CAS  Google Scholar 

  • Hosokawa Y, Ueyama E, Morikawa Y, Maeda Y, Seto M, Senba E (1999) Molecular cloning of a cDNA encoding mouse A15, a member of the transmembrane 4 superfamily, and its preferential expression in brain neurons. Neurosci Res 35:281–290

    Article  CAS  Google Scholar 

  • Huang S, Yuan S, Dong M, Su J, Yu C, Shen Y, Xie X, Yu Y, Yu X, Chen S, Zhang S, Pontarotti P, Xu A (2005) The phylogenetic analysis of tetraspanins projects the evolution of cell–cell interactions from unicellular to multicellular organisms. Genomics 86:674–684

    Article  CAS  Google Scholar 

  • Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148

    Article  CAS  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C (2000) Severely reduced female fertility in CD9-deficient mice. Science 287:319–321

    Article  Google Scholar 

  • Levy S, Shoham T (2005) Protein-protein interactions in the tetraspanin web. Physiology 20:218–224

    Article  CAS  Google Scholar 

  • Lim C, Yildirim-Aksoy M, Shelby R, Li MH, Klesius PH (2010) Growth performance, vitamin E status, and proximate and fatty acid composition of channel catfish, Ictalurus punctatus, fed diets containing various levels of fish oil and vitamin E. Fish Physiol Biochem 36:855–866

    Article  CAS  Google Scholar 

  • Maecker HT, Todd SC, Levy S (1997) The tetraspanin superfamily: molecular facilitators. FASEB J 11:428–442

    Article  CAS  Google Scholar 

  • Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M, Mekada E (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:321–324

    Article  CAS  Google Scholar 

  • Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, Weiner AJ, Houghton M, Rosa D, Grandi G, Abrignani S (1998) Binding of hepatitis C virus to CD81. Science 282:938–941

    Article  CAS  Google Scholar 

  • Pols MS, Klumperman J (2009) Trafficking and function of the tetraspanin CD63. Expt Cell Res 315:1584–1592

    Article  CAS  Google Scholar 

  • Puls KL, Wright MD (2000) The molecular characterization of mouse tspan-3. DNA Seq 11:271–275

    Article  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  CAS  Google Scholar 

  • Seigneuret M, Delaguillaumie A, Lagaudrière-Gesbert C, Conjeaud H (2001) Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion. J Biol Chem 276:40055–40064

    Article  CAS  Google Scholar 

  • Silvie O, Rubinstein E, Franetich J-F, Prenant M, Elodie Belnoue E, Rénia L, Hannoun L, Eling W, Levy S, Boucheix C, Mazier D (2003) Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat Med 9:93–96

    Article  CAS  Google Scholar 

  • Small BC, Murdock CA, Bilodeau-Bourgeois AL, Peterson BC, Waldbieser GC (2008) Stability of reference genes for real-time PCR analyses in channel catfish (Ictalurus punctatus) tissues under varying physiological conditions Comp. Biochem Physiol B Biochem Mol Biol 151:296–304

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Tiwari-Woodruff SK, Buznikov AG, Vu TQ, Micevych PE, Chen K, Kornblum HI, Bronstein JM (2001) OSP/claudin-11 forms a complex with a novel member of the tetraspanin super family and beta1 integrin and regulates proliferation and migration of oligodendrocytes. J Cell Biol 153:295–305

    Article  CAS  Google Scholar 

  • Todd SC, Doctor VS, Levy S (1998) Sequences and expression of six new members of the tetraspanin/TM4SF family. Biochim Biophys Acta 1399:101–104

    Article  CAS  Google Scholar 

  • Tokoro Y, Shibuya K, Osawa M, Tahara-Hanaoka S, Iwama A, Kitamura T, Nakauchi H, Shibuya A (2001) Molecular cloning and characterization of mouse Tspan-3, a novel member of the tetraspanin superfamily, expressed on resting dendritic cells. Biochem Biophys Res Commun 288:178–183

    Article  CAS  Google Scholar 

  • United States Department of Agriculture (2007) National Agricultural Statistics Service. Catfish Production Report. http://www.nass.usda.gov

  • Yeh H-Y, Klesius PH (2009) Channel catfish, Ictalurus punctatus Rafinesque 1818, tetraspanin membrane protein family: characterization and expression analysis of CD81 cDNA. Vet Immunol Immunopathol 128:431–436

    Article  CAS  Google Scholar 

  • Yeh H-Y, Klesius PH (2010a) Channel catfish (Ictalurus punctatus Rafinesque, 1818) tetraspanin membrane protein family: Identification, characterization and expression analysis of CD63 cDNA. Vet Immunol Immunopathol 133:302–308

    Article  CAS  Google Scholar 

  • Yeh H-Y, Klesius PH (2010b) Sequence analysis, characterization and tissue distribution of channel catfish (Ictalurus punctatus Rafinesque, 1818) myeloperoxidase cDNA. Fish Shellfish Immunol 28:504–509

    Article  CAS  Google Scholar 

  • Yoder JA, Litman GW (2000) The zebrafish fth1, slc3a2, men1, pc, fgf3, and cycd1 genes define two regions of conserved synteny between linkage group 7 and human chromosome 11q13. Gene 261:235–242

    Article  CAS  Google Scholar 

  • Zemni R, Bienvenu T, Vinet MC, Sefiani A, Carrié A, Billuart P, McDonell N, Couvert P, Francis F, Chafey P, Fauchereau F, Friocourt G, des Portes V, Cardona A, Frints S, Meindl A, Brandau O, Ronce N, Moraine C, van Bokhoven H, Ropers HH, Sudbrak R, Kahn A, Fryns JP, Beldjord C, Chelly J (2000) A new gene involved in X-linked mental retardation identified by analysis of an X;2 balanced translocation. Nat Genet 24:167–170

    Article  CAS  Google Scholar 

  • Zhu J, Yan K, Lu L, Peng C, Zhou C, Chen S, Xie X, Dong M, Xu A (2006) Molecular cloning and characterization of CD9 cDNA from cartilaginous fish, red stingray, Dasyatis akajei. Mol Immunol 43:1534–1540

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Mrs. Dorothy B. Moseley of USDA ARS Aquatic Animal Health Research Unit in Auburn, AL for excellent technical support, and Dr. Brian E. Scheffler and his Bioinformatics Group at the USDA ARS Genomics and Bioinformatics Research Unit in Stoneville, MS for sequencing and bioinformatics. This study was supported by the USDA Agricultural Research Service CRIS project no. 6420-32000-020-00D. Mention of trade names or commercial products in this paper is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. The US Department of Agriculture is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung-Yueh Yeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, HY., Klesius, P.H. Channel catfish, Ictalurus punctatus (Rafinesque), tetraspanin membrane protein family: identification, characterization and phylogenetic analysis of tetraspanin 3 and tetraspanin 7 (CD231) transcripts. Fish Physiol Biochem 38, 1553–1563 (2012). https://doi.org/10.1007/s10695-012-9645-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-012-9645-x

Keywords

Navigation