Skip to main content
Log in

Heat Transfer in Ultra-High-Performance Concrete-Filled Double-Skin Tubes Under Fire Conditions

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

This paper develops an FEA modeling protocol for simulating ultra-high-performance concrete-filled double-skin tubes (CFDST) for heat transfer analysis purposes. The research presented in this paper refines the existing FE methodologies for circular, rectangular, elliptical, hexagonal, and octagonal CFDST members under fire conditions. Various modeling parameters, such as thermal properties of different materials and the thermal contact conductance at the interaction surfaces, are incorporated and controlled via an automatic algorithm for proficient modeling. It is found that the available models for calculating the thermal contact conductance at the interfaces between metal tubes and the concrete cores have a strong dependence on the cross-sectional shape. Thus, a refined model of the thermal conductance for the hexagonal and octagonal CFDST columns is proposed. Extensive experimental results (212 fire tests) are assembled from the literature to verify the proposed FE methodology. Good agreements with test results are demonstrated when predicting the temperature fields within the considered CFDST cross-sections. Consequently, extensive results from the proposed algorithm can provide an initial basis for parametric studies and for forthcoming nonlinear stress analysis simulations of CFDST columns under fire, which are primary goals in future studies. Finally, complying with the existing design codes, a new simplified analytical model based on the finite difference (FD) method is presented for predicting the temperature developments through CFDST columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22

Similar content being viewed by others

Data Availability

All data generated or used during the study are available in a repository online in accordance with funder data retention policies. Abdelrahman, Ahmed Hussain Ali; Ghannam, Mohamed; Lotfy, Sameh; AlHamaydeh, Mohammad. (2021). “Dataset for Temperature Development in Ultra-High-Performance Concrete-Filled Double-Skin Tubes Exposed to Fire” (Version 1.0) Zenodo. https://doi.org/10.5281/zenodo.5644692 [56]. All models and codes generated or used during the study are available from the corresponding authors upon reasonable request.

Abbreviations

CFDST:

Concrete-filled double-skin tubes

CFDT:

Concrete-filled double tubes

CFST:

Concrete-filled steel tubes

CFSST:

Concrete-filled stainless steel tubes

CFT:

Concrete-filled tube

COV:

Coefficient of variance

FD:

Finite-difference

FEA:

Finite element analysis

FE:

Finite-element

FRC:

Fiber reinforced concrete

GFRP:

Glass Fiber-Reinforced Polymers

HSC:

High-strength concrete

LWC:

Lightweight concrete

NSC:

Normal-strength concrete

UHPC:

Ultra-high-performance concrete

UHSC:

Ultra-high-strength concrete

a and b :

Constants used for the heat conductance equation

B :

Overall width of the cross-section

B o :

The overall width of the outer tube

B i :

The overall width of the inner tube

σ boltz :

Boltzmann constant = 5.67 × 108 W/m2K4

Cc :

Specific heat (J/kg.K)

D :

The overall diameter of the cross-section

D o :

The diameter of the outer tube in CFDST

D i :

The diameter of the inner tube in CFDST

\(f^{\prime}_{c}\) :

The cylinder compressive strength of filling concrete

Q t :

The total heat energy from convection and radiation (W/m2)

h j :

Thermal contact conductance

n :

A superscript refers to the time in second

K :

The heat conductivity (W/m·K)

L :

The length of the member

T :

The temperature (°C)

T test :

Temperature from test data

T s :

The steel surfaces temperature

T FE :

Temperature from FE

T inner :

Temperature of the inner tube

T f :

The maximum fire temperature after 120 min of fire exposure

t :

Tube thickness.

t o :

The thickness of the outer tube

t i :

The thickness of the inner tube

α c :

The convective heat transfer coefficient

ϵ m :

The emissivity coefficient

ε f :

The fire emissivity

ε s :

The steel emissivity

ρ :

Material density (kg/m3)

ρ c :

The density of concrete

χ:

Hollowness or cavity ratio

∆t :

Time interval

∆x :

The layer width (m)

References

  1. A. C. 363 (2010) ACI Committee 363. Report on high strength concrete.

  2. E. C. f. Standardization (2004) Eurocode 2: design of concrete structures—Part 1–2: general rules-structural fire design. EN 1992-1-2. Ed: European Committee for Standardization.

  3. Xiong MX, Liew JYR (2020) Buckling behavior of circular steel tubes infilled with C170/185 ultra-high-strength concrete under fire. Eng Struct 212:110523

    Article  Google Scholar 

  4. Abdalla S, Abed F, AlHamaydeh M (2013) Behavior of CFSTs and CCFSTs under quasi-static axial compression. J Construct Steel Res 90:235–244

    Article  Google Scholar 

  5. Taranath BS (2016) Structural analysis and design of tall buildings: steel and composite construction. CRC Press

    Book  Google Scholar 

  6. Zhao XL, Grzebieta R (2002) Strength and ductility of concrete filled double skin (SHS inner and SHS outer) tubes. Thin-Walled Struct 40(2):199–213

    Article  Google Scholar 

  7. Zhao XL, Han B, Grzebieta RH (2002) Plastic mechanism analysis of concrete-filled double-skin (SHS inner and SHS outer) stub columns. Thin-Walled Struct 40(10):815–833

    Article  Google Scholar 

  8. Wei S, Mau ST, Vipulanandan C, Mantrala SK (1995) Performance of new sandwich tube under axial loading: experiment. ASCE J Struct Eng 121(12):1806–1814

    Article  Google Scholar 

  9. Wei S, Mau ST, Vipulanandan C, Mantrala SK (1995) Performance of new sandwich tube under axial loading: analysis. ASCE J Struct Eng 121(12):1815–1821

    Article  Google Scholar 

  10. Tao Z, Han LH, Zhao XL (2004) Behaviour of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns. J Construct Steel Res 60(8):1129–1158

    Article  Google Scholar 

  11. Han LH, Tao Z, Huang H, Zhao XL (2004) Concrete-filled double skin (SHS outer and CHS inner) steel tubular beam-columns. Thin-Walled Struct 42(9):1329–1355

    Article  Google Scholar 

  12. Elchalakani M, Zhao XL, Grzebieta R (2002) Tests on concrete filled double-skin (CHS outer and SHS inner) composite short columns under axial compression. Thin-Walled Struct 40(5):415–441

    Article  Google Scholar 

  13. Yang YF, Han LH (2008) Concrete-filled double-skin tubular columns under fire. Mag Concr Res 60(3):211–222

    Article  Google Scholar 

  14. Lu H, Han LH, Zhao XL (2010) Fire performance of self-consolidating concrete filled double skin steel tubular columns: experiments. Fire Safety J 45(2):106–115

    Article  Google Scholar 

  15. Lu H, Zhao XL, Han LH (2011) FE modelling and fire resistance design of concrete filled double skin tubular columns. J Construct Steel Res 67(11):1733–1748

    Article  Google Scholar 

  16. Camargo L, Rodrigues C, Fakury H, Laim L (2019) Fire resistance of axially and rotationally restrained concrete-filled double-skin and double-tube hollow steel columns. J Struct Eng 145(11):04019128

    Article  Google Scholar 

  17. Li W, Wang T, Han LH (2019) Seismic performance of concrete-filled double-skin steel tubes after exposure to fire: experiments. J Construct Steel Res 154:209–223

    Article  Google Scholar 

  18. Lopes RFR, Rodrigues JPC (2020) Behaviour of restrained concrete filled square double-skin and double-tube hollow columns in case of fire. Eng Struct 216:110736

    Article  Google Scholar 

  19. Tao Z, Ghannam M (2013) Heat transfer in concrete-filled carbon and stainless steel tubes exposed to fire. Fire Safety J 61:1–11

    Article  Google Scholar 

  20. Imani R, Mosqueda G, Bruneau M (2015) Finite element simulation of concrete-filled double-skin tube columns subjected to postearthquake fires. ASCE J Struct Eng 141(12):04015055

    Article  Google Scholar 

  21. Han LH, Xu L, Zhao XL (2003) Tests and analysis on the temperature field within concrete filled steel tubes with or without protection subjected to a standard fire. Adv Struct Eng 6(2):121–133

    Article  Google Scholar 

  22. Kodur VKR, Lie TT (1995) Fire performance of concrete-filled hollow steel columns. J Fire Protect Eng 7(3):89–97

    Article  Google Scholar 

  23. Kodur VKR, Lie TT (1995) Experimental studies on the fire resistance of circular hollow steel columns filled with steel-fibre-reinforced concrete. National Research Council Canada, Institute for Research in Construction

    Google Scholar 

  24. Kodur VKR (1998) Performance of high strength concrete-filled steel columns exposed to fire. Can J Civ Eng 25(6):975–981

    Article  Google Scholar 

  25. Han LH (2001) Fire performance of concrete filled steel tubular beam-columns. J Construct Steel Res 57(6):697–711

    Article  Google Scholar 

  26. Han LH, Zhao XL, Yang YF, Feng JB (2003) Experimental study and calculation of fire resistance of concrete-filled hollow steel columns. ASCE J Struct Eng 129(3):346–356

    Article  Google Scholar 

  27. Hong S, Varma AH (2009) Analytical modeling of the standard fire behavior of loaded CFT columns. J Construct Steel Res 65(1):54–69

    Article  Google Scholar 

  28. Romero ML, Moliner V, Espinos A, Ibañez C, Hospitaler A (2011) Fire behavior of axially loaded slender high strength concrete-filled tubular columns. J Construct Steel Res 67(12):1953–1965

    Article  Google Scholar 

  29. Tao Z, Uy B, Liao FY, Han LH (2011) Nonlinear analysis of concrete-filled square stainless steel stub columns under axial compression. J Construct Steel Res 67(11):1719–1732

    Article  Google Scholar 

  30. Moliner V, Espinos A, Romero ML, Hospitaler A (2013) Fire behavior of eccentrically loaded slender high strength concrete-filled tubular columns. J Construct Steel ResJ Construct Steel Res 83:137–146

    Article  Google Scholar 

  31. Tao Z, Ghannam M, Song T-Y, Han L-H (2016) Experimental and numerical investigation of concrete-filled stainless steel columns exposed to fire. J Construct Steel Res 118:120–134

    Article  Google Scholar 

  32. Szymkuc W, Toklowicz P, Glema A, Craveiro H (2018) Study on the use of ultra-lightweight cement composite for enhancing fire performance of concrete filled tubular columns. In Proceedings of 10th International Conference on Structures in Fire, pp. 585–592.

  33. Imani R (2014) Post-earthquake fire resistance of ductile concrete filled double-skin tube columns. State University of New York, Buffalo

    Google Scholar 

  34. Espinos A, Romero ML, Hospitaler A (2010) Advanced model for predicting the fire response of concrete filled tubular columns. J Construct Steel Res 66(8):1030–1046

    Article  Google Scholar 

  35. Aribert JM, Renaud C, Zhao B (2008) Simplified fire design for composite hollow-section columns. In Proceedings of the ICE—Structures and Buildings, pp. 325–36.

  36. Espinos A, Romero ML, Hospitaler A (2012) Simple calculation model for evaluating the fire resistance of unreinforced concrete filled tubular columns. Eng Struct 42:231–244

    Article  Google Scholar 

  37. Espinos A, Romero ML, Hospitaler A (2013) Fire design method for bar-reinforced circular and elliptical concrete filled tubular columns. Eng Struct 56:384–395

    Article  Google Scholar 

  38. Espinos A, Albero V, Romero ML, Hospitaler A, Renaud C, Wang YC (2018) Eurocode 4 based method for the fire design of concrete-filled steel tubular columns. In: Zhao A-L (ed) Tubular Structures XVI. Taylor & Francis Group, Melbourne, Australia, pp 311–316

    Google Scholar 

  39. Ibañez C, Aguado JV, Romero ML, Espinos A, Hospitaler A (2015) Fire design method for concrete filled tubular columns based on equivalent concrete core cross-section. Fire Saf J 78:10–23

    Article  Google Scholar 

  40. Ibañez C, Romero ML, Hospitaler A (2013) Fiber beam model for fire response simulation of axially loaded concrete filled tubular columns. Eng Struct 56:182–193

    Article  Google Scholar 

  41. Ghannam M, Song TY (2021) Fire resistance design of concrete-filled steel tube stub columns. Fire Technol 57:911–942

    Article  Google Scholar 

  42. Wang ZH, Tan KH (2006) Residual area method for heat transfer analysis of concrete-encased I-sections in fire. Eng Struct 28(3):411–422

    Article  Google Scholar 

  43. Sakumoto Y, Okada T, Yoshida M, Tasaka S (1994) Fire resistance of concrete-filled, fire-resistant steel-tube columns. ASCE J Mater Civil Eng 6(2):169–184

    Article  Google Scholar 

  44. Lu H, Zhao X-L, Han L-H (2009) Fire behaviour of high strength self-consolidating concrete filled steel tubular stub columns. J Construct Steel Res 65(10):1995–2010

    Article  Google Scholar 

  45. Han LH, Yang YF, Xu L (2003) An experimental study and calculation on the fire resistance of concrete-filled SHS and RHS columns. J Construct Steel Res 59(4):427–452

    Article  Google Scholar 

  46. Han LH, Feng C, Liao FY, Tao Z, Uy B (2013) Fire performance of concrete filled stainless steel tubular columns. Eng Struct 56:165–181

    Article  Google Scholar 

  47. Rodrigues JPC, Correia AJPM, Kodur V (2021) Influence of cross-section type and boundary conditions on structural behavior of concrete-filled steel tubular columns subjected to fire. ASCE J Struct Eng 147(1):04020289

    Article  Google Scholar 

  48. Lu H, Zhao X-L, Han L-H (2010) Testing of self-consolidating concrete-filled double skin tubular stub columns exposed to fire. J Construct Steel Res 66(8):1069–1080

    Article  Google Scholar 

  49. Romero ML, Espinos A, Portolés JM, Hospitaler A, Ibañez C (2015) Slender double-tube ultra-high strength concrete-filled tubular columns under ambient temperature and fire. Eng Struct 99:536–545

    Article  Google Scholar 

  50. ISO_834-1 (1999) Fire-resistance tests-Elements of building construction-Part 1: general requirements. International Organization for Standardization, Geneva

    Google Scholar 

  51. SIMULIA (2010, 2016) Abaqus/CAE 6.14-1. Dassault Systèmes Corp., Providence, RI (USA).

  52. Eurocode-1 (2002) Actions on structures, Part 1–2, General actions- actions on structures exposed to fire. London: BS EN 1991-1-2: 2002. British Standards Institution.

  53. Gardner L, Ng KT (2006) Temperature development in structural stainless steel sections exposed to fire. Fire Safety J 41(3):185–203

    Article  Google Scholar 

  54. Schneider U, Diederichs U, Ehm C (1982) Effect of temperature on steel and concrete for PCRV’s. Nuclear Eng Design 67(2):245–258

    Article  Google Scholar 

  55. Rempe JL, Knudson DL (2008) High temperature thermal properties for metals used in LWR vessels. J Nuclear Mater 372(2):350–357

    Article  Google Scholar 

  56. Abdelrahman, AHA, Ghannam, M, Lotfy, S, AlHamaydeh, M (2021) Dataset for temperature development in ultra-high-performance concrete-filled double-skin tubes exposed to fire (Version 1.0) Zenodo. https://doi.org/10.5281/zenodo.5644692.

  57. Kodur VKR, Sultan MA (2003) Effect of temperature on thermal properties of high-strength concrete. J Mater Civil Eng 15(2):101–107

    Article  Google Scholar 

  58. Khaliq W, Kodur V (2011) Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures. Cement Concrete Res 41(11):1112–1122

    Article  Google Scholar 

  59. Kodur V, Banerji S, Solhmirzaei R (2020) Effect of temperature on thermal properties of ultrahigh-performance concrete. J Mater Civ Eng 32(8):04020210

    Article  Google Scholar 

  60. Hurley MJ, Gottuk DT, Hall JR Jr, Harada K, Kuligowski ED, Puchovsky M et al (2015) SFPE handbook of fire protection engineering. Springer

    Google Scholar 

  61. Design of steel structures, Part 1–2, General rules, structural fire design, 2005.

  62. Dobrosavljević AS, Maglić KD (1992) Measurements of specific heat and electrical resistivity of austenitic stainless steel (St 14970) in the range 300–1500 K by pulse calorimetry (in English). Int J Thermophys 13(1):57–64

    Article  Google Scholar 

  63. Design of concrete structures, Part 1–2, General rules, structural fire design, 2005.

  64. ASCE, Structural fire protection (1992). Manual No. 78, New York, USA: ASCE Committee on Fire Protection, Structural Division, American Society of Civil Engineers.

  65. Recommendations for design and construction of concrete filled steel tubular structures, 1997.

  66. Shin KY, Kim SB, Kim JH, Chung M, Jung PS (2002) Thermo-physical properties and transient heat transfer of concrete at elevated temperatures. Nuclear Eng Design 212(1):233–241

    Article  Google Scholar 

  67. Design of composite steel and concrete structures, part 1.2 General rules, Structural fire design., 2005.

  68. Marechal JC (1972) “Thermal conductivity and thermal expansion coefficients of concrete as a function of temperature and humidity”, Concrete for Nuclear Reactors, ACI SP34. American Concrete Institute, Detroit, pp 1047–1058

    Google Scholar 

  69. Lie TT, Kodur VKR (1996) Thermal and mechanical properties of steel-fibre-reinforced concrete at elevated temperatures. Can J Civil Eng 23(2):511–517

    Article  Google Scholar 

  70. Van Geem MG, Gajda J, Dombrowski K (1997) Thermal properties of commercially available high-strength concretes. ASTM 19(1):38–53

    Google Scholar 

  71. Adl-Zarrabi B, Boström L, Wickström U (2006) Using the TPS method for determining the thermal properties of concrete and wood at elevated temperature. Fire Mater 30(5):359–369

    Article  Google Scholar 

  72. Kodur V, Khaliq W (2011) Effect of temperature on thermal properties of different types of high-strength concrete. J Mater Civ Eng 23(6):793–801

    Article  Google Scholar 

  73. Xing Z, Beaucour AL, Hebert R, Noumowe A, Ledesert B (2011) Influence of the nature of aggregates on the behaviour of concrete subjected to elevated temperature. Cement Concrete Res 41(4):392–402

    Article  Google Scholar 

  74. Harmathy TZ (1970) Thermal properties of concrete at elevated temperatures. J Mater 5(1):44–74

    Google Scholar 

  75. Abe H, Kawahara T, Ito T, Haraguchi A (1972) Influence factors of elevated temperatures on thermal properties and inelastic behavior of concrete. ACI Symposium Publication 34.

  76. Harada JTSYFFT (1972) Strength, elasticity and thermal properties of concrete subjected to elevated temperatures. ACI Symposium Publication 34

  77. Ding J, Wang YC (2008) Realistic modelling of thermal and structural behaviour of unprotected concrete filled tubular columns in fire. J Construct Steel Res 64(10):1086–1102

    Article  Google Scholar 

  78. Ghojel J (2002) Application of inverse analysis to thermal contact resistance between very rough nonconforming surfaces. Inverse Prob Eng 10(4):323–334

    Article  Google Scholar 

  79. Ghojel J (2004) Experimental and analytical technique for estimating interface thermal conductance in composite structural elements under simulated fire conditions. Exp Thermal Fluid Sci 28(4):347–354

    Article  Google Scholar 

  80. Lu H (2010) Fire behaviour of self-consolidating concrete filled double skin steel tubular columns, PhD thesis. Department of Civil Engineering, Monash University.

  81. Harmathy TZ (1993) Fire safety design and concrete. Longman scientific & Technical

    Google Scholar 

  82. Lie TT, Chabot M (1990) A method to predict the fire resistance of circular concrete filled hollow steel columns. J Fire Prot Eng 2:111–124

    Article  Google Scholar 

  83. Lie T, Irwin R (1995) Fire resistance of rectangular steel columns filled with bar-reinforced concrete. J Struct Eng 121:797–805

    Article  Google Scholar 

  84. D. P. Bentz and K. R. Prasad (2007) “Thermal performance of fire resistive materials I. Characterization with respect to thermal performance models,” Rep. No. BFRL-NIST 7401, NIST, Gaithersburg, Md.

  85. Cochrane D, Helzel M (2005) Guide to stainless steel finishes. Euro inox, Building series, vol. 1, Sidcup.

  86. Euro-inox (2003) Design manual for structural stainless steel—commentary, 2nd edn. Euro Inox and The Steel Construction Institute

    Google Scholar 

  87. Kodur V, Dwaikat M, Fike R (2010) High-temperature properties of steel for fire resistance modeling of structures. J Mater Civ Eng 22(5):423–434

    Article  Google Scholar 

  88. Blumm J, Lindemann A, Niedrig B, Campbell R (2007) Measurement of selected thermophysical properties of the npl certified reference material stainless steel 310. Int J Thermophys 28(2):674–682

    Article  Google Scholar 

  89. Ignatenko GK, Maksimovskii VV, Pashkina MI (1973) Thermal conductivity and thermal diffusivity of plasma-sprayed stainless steel. J Eng Phys 24(1):86–87

    Article  Google Scholar 

  90. Sweet JN, Roth EP, Moss M (1987) Thermal conductivity of Inconel 718 and 304 stainless steel. Int J Thermophys 8(5):593–606

    Article  Google Scholar 

  91. Leibowitz L, Blomquist RA (1988) Thermal conductivity and thermal expansion of stainless steels D9 and HT9. Int J Thermophys 9(5):873–883

    Article  Google Scholar 

  92. Graves RS, Kollie TG, McElroy DL, Gilchrist KE (1991) The thermal conductivity of AISI 304L stainless steel. Int J Thermophys 12(2):409–415

    Article  Google Scholar 

  93. Yücel A, Maddocks JR (1994) Thermal conductivity of commercially available 21-6-9 stainless steel. In: Reed RP, Fickett FR, Summers LT, Stieg M (eds) Advances in cryogenic engineering materials: volume 40, part A. Springer, Boston, MA, pp 1255–1261

    Chapter  Google Scholar 

  94. Assael MJ, Gialou K (2003) Measurement of the thermal conductivity of stainless steel AISI 304L Up to 550 K. Int J Thermophys 24(4):1145–1153

    Article  Google Scholar 

  95. Rudtsch S et al (2005) Intercomparison of thermophysical property measurements on an austenitic stainless steel. Int J Thermophys 26(3):855–867

    Article  Google Scholar 

  96. Peet MJ, Hasan HS, Bhadeshia HKDH (2011) Prediction of thermal conductivity of steel. Int J Heat Mass Transf 54:2602–2608

    Article  MATH  Google Scholar 

  97. Stankus SV, Savchenko IV, Baginskii AV, Verba OI, Prokop’ev AM, Khairulin RA (2008) Thermal conductivity and thermal diffusivity coefficients of 12Kh18N10T stainless steel in a wide temperature range. High Temp 46(5):731–733

    Article  Google Scholar 

  98. Cezairliyan A, Miiller AP (1980) Thermophysical measurements on low carbon 304 stainless steel above 1400 K by a transient (subsecond) technique, (in English). Int J Thermophys 1(1):83–95

    Article  Google Scholar 

Download references

Acknowledgements

The first and second authors would like to express their gratitude to Mansoura University for providing an excellent research environment for conducting this research. The authors are grateful for financial support from the competitive research projects - research unit - Mansoura University for the project “Solar Energy Storage System Using a Medium of Sustainable Geopolymer Concrete” (MU-Eng-22-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad AlHamaydeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelrahman, A.H.A., Ghannam, M., Lotfy, S. et al. Heat Transfer in Ultra-High-Performance Concrete-Filled Double-Skin Tubes Under Fire Conditions. Fire Technol 59, 1519–1554 (2023). https://doi.org/10.1007/s10694-023-01386-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-023-01386-8

Keywords

Navigation