Skip to main content
Log in

A Review of Fire-Extinguishing Agents and Fire Suppression Strategies for Lithium-Ion Batteries Fire

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

The susceptibility of LIBs to fire and explosion under extreme conditions has become a significant challenge for large-scale application of lithium-ion batteries (LIBs). However, the suppression effect of fire-extinguishing agent on LIBs fire is still far from being satisfactory attributed to special combustion characteristics of LIBs fire. This manuscript provides a comprehensive review on the origin and behavior of LIBs fire, and the selection of the typical fire-extinguishing agents for LIBs. Novel fire suppression strategies are also discussed. Several agents such as liquid nitrogen, dodecafluoro-2-methylpentan-3-one (C6F12O) and water-based fire-extinguishing agents possess better fire-extinguishing and cooling capabilities. Unfortunately, there are some shortcomings that restrict their application. The ideal fire-extinguishing agents for LIBs should be both highly thermally conductive, highly electrically insulating, highly efficient in extinguishing LIBs fire, cheap, non-toxic, residue-free and toxic gases-absorbing. Some perspectives and outlooks are given that the combination of ideal fire-extinguishing agent and novel fire-extinguishing strategy can insure a high level of safety for present and future LIB-based technologies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Adapted from Ref. [36] with permission of Elsevier

Figure 2

Adapted from Ref. [21] with permission of Elsevier

Figure 3

Adapted from Ref [27]

Figure 4

Adapted from Ref. [76]

Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Lyu P, Liu X, Qu J, Zhao J, Huo Y, Qu Z, Rao Z (2020) Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Mater 31:195–220

    Article  Google Scholar 

  2. Chen JM (2021) Carbon neutrality: toward a sustainable future. The Innovation 2:100127

    Article  Google Scholar 

  3. Watanabe S, Kinoshita M, Hosokawa T, Morigaki K, Nakura K (2014) Capacity fading of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (effect of depth of discharge in charge–discharge cycling on the suppression of the micro-crack generation of LiAlyNi1−x−yCoxO2 particle). J Power Sour 260:50–56

    Article  Google Scholar 

  4. Ping P, Wang Q, Huang P, Li K, Sun J, Kong D, Chen C (2015) Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test. J Power Sour 285:80–89

    Article  Google Scholar 

  5. Dubarry M, Devie A (2018) Battery durability and reliability under electric utility grid operations: representative usage aging and calendar aging. J Energy Storage 18:185–195

    Article  Google Scholar 

  6. Chen M, Dongxu O, Liu J, Wang J (2019) Investigation on thermal and fire propagation behaviors of multiple lithium-ion batteries within the package. Appl Therm Eng 157:113750

    Article  Google Scholar 

  7. Jhu CY, Wang YW, Shu CM, Chang JC, Wu HC (2011) Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter. J Hazard Mater 192:99–107

    Google Scholar 

  8. Ren D, Feng X, Lu L, He X, Ouyang M (2019) Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions. Appl Energy 250:323–332

    Article  Google Scholar 

  9. Ping P, Kong D, Zhang J, Wen R, Wen J (2018) Characterization of behaviour and hazards of fire and deflagration for high-energy Li-ion cells by over-heating. J Power Sourc 398:55–66

    Article  Google Scholar 

  10. Zhang L, Zhao C, Liu Y, Xu J, Sun J, Wang Q (2021) Electrochemical performance and thermal stability of lithium ion batteries after immersion. Corros Sci 184:109384

    Article  Google Scholar 

  11. García A, Monsalve-Serrano J, Lago Sari R, Martinez-Boggio S (2021) An optical investigation of thermal runway phenomenon under thermal abuse conditions. Energy Convers Manag 246:114663

    Article  Google Scholar 

  12. Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sourc 208:210–224

    Article  Google Scholar 

  13. Liu H, Wei Z, He W, Zhao J (2017) Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: a review. Energy Convers Manag 150:304–330

    Article  Google Scholar 

  14. Jiang K, Liao G, Jiaqiang E, Zhang F, Chen J, Leng E (2020) Thermal management technology of power lithium-ion batteries based on the phase transition of materials: a review. J Energy Storage 32:101816

    Article  Google Scholar 

  15. Wang M, Teng S, Xi H, Li Y (2021) Cooling performance optimization of air-cooled battery thermal management system. Appl Therm Eng 195:117242

    Article  Google Scholar 

  16. Zeng Z, Wu B, Xiao L, Jiang X, Chen Y, Ai X, Yang H, Cao Y (2015) Safer lithium ion batteries based on nonflammable electrolyte. J Power Sourc 279:6–12

    Article  Google Scholar 

  17. Wang Q, Jiang L, Yu Y, Sun J (2019) Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 55:93–114

    Article  Google Scholar 

  18. Shi C, Peng Z, Chen L, Yang P, Zhao J (2014) Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries. J Power Sourc 270:547–553

    Article  Google Scholar 

  19. Qin P, Sun J, Yang X, Wang Q (2021) Battery thermal management system based on the forced-air convection: a review. eTransportation 7:100097

    Article  Google Scholar 

  20. Xu B, Lee J, Kwon D, Kong L, Pecht M (2021) Mitigation strategies for Li-ion battery thermal runaway: a review. Renew Sustain Energy Rev 150:111437

    Article  Google Scholar 

  21. Li H, Duan Q, Zhao C, Huang Z, Wang Q (2019) Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode. J Hazard Mater 375:241–254

    Article  Google Scholar 

  22. Yan W, Wang Z, Chen S (2021) Quantitative analysis on the heat transfer modes in the process of thermal runaway propagation in lithium-ion battery pack under codnfined and semi-confined space. Int J Heat Mass Transf 176:121483

    Article  Google Scholar 

  23. Huang Z, Liu J, Zhai H, Wang Q (2021) Experimental investigation on the characteristics of thermal runaway and its propagation of large-format lithium ion batteries under overcharging and overheating conditions. Energy 233:121103

    Article  Google Scholar 

  24. Wang Q, Shao G, Duan Q, Chen M, Li Y, Wu K, Liu B, Peng P, Sun J (2015) The efficiency of heptafluoropropane fire extinguishing agent on suppressing the lithium titanate battery fire. Fire Technol 52:387–396

    Article  Google Scholar 

  25. Blum A, Long RT (2015) Full-scale fire tests of electric drive vehicle batteries. SAE Int J Passeng Cars Mech Syst 8:565–572

    Article  Google Scholar 

  26. Stec AA (2017) Fire toxicity—the elephant in the room? Fire Saf J 91:79–90

    Article  Google Scholar 

  27. Golubkov AW, Fuchs D, Wagner J, Wiltsche H, Stangl C, Fauler G, Voitic G, Thaler A, Hacker V (2014) Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv 4:3633–3642

    Article  Google Scholar 

  28. Larsson F, Andersson P, Blomqvist P, Mellander BEJSR (2017) Toxic fluoride gas emissions from lithium-ion battery fires. Sci Rep 7:1

    Article  Google Scholar 

  29. Huang Z, Zhao C, Li H, Peng W, Zhang Z, Wang Q (2020) Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes. Energy 205:117906

    Article  Google Scholar 

  30. Larsson F, Andersson P, Blomqvist P, Lorén A, Mellander B-E (2014) Characteristics of lithium-ion batteries during fire tests. J Power Sourc 271:414–420

    Article  Google Scholar 

  31. Liu Y, Yang K, Zhang M, Li S, Gao F, Duan Q, Sun J, Wang Q (2022) The efficiency and toxicity of dodecafluoro-2-methylpentan-3-one in suppressing lithium-ion battery fire. J Energy Chem 65:532–540

    Article  Google Scholar 

  32. Zhang L, Duan Q, Meng X, Jin K, Xu J, Sun J, Wang Q (2022) Experimental investigation on intermittent spray cooling and toxic hazards of lithium-ion battery thermal runaway. Energy Convers Manag 252:115091

    Article  Google Scholar 

  33. Wang Q, Mao B, Stoliarov SI, Sun J (2019) A review of lithium ion battery failure mechanisms and fire prevention strategies. Prog Energy Combust Sci 73:95–131

    Article  Google Scholar 

  34. Yuan S, Chang C, Yan S, Zhou P, Qian X, Yuan M, Liu K (2021) A review of fire-extinguishing agent on suppressing lithium-ion batteries fire. J Energy Chem 62:262–280

    Article  Google Scholar 

  35. Sun J, Mao B, Wang Q (2021) Progress on the research of fire behavior and fire protection of lithium ion battery. Fire Saf J 120:103119

    Article  Google Scholar 

  36. Liu T, Liu Y, Wang X, Kong X, Li G (2019) Cooling control of thermally-induced thermal runaway in 18,650 lithium ion battery with water mist. Energy Convers Manag 199:111969

    Article  Google Scholar 

  37. Wang Q, Sun J, Chu G (2005) Lithium ion battery fire and explosion. Fire Saf Sci 8:375–382

    Article  Google Scholar 

  38. Balakrishnan PG, Ramesh R, Prem Kumar T (2006) Safety mechanisms in lithium-ion batteries. J Power Sourc 155:401–414

    Article  Google Scholar 

  39. Kong LL, Li C, Jiang J, Pecht MG (2018) Li-ion battery fire hazards and safety strategies. Energies 11:2191

    Article  Google Scholar 

  40. Richard MN, Dahn JR (1999) Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte I. Exp Fuel Energy Abstr 41:2068–2077

    Google Scholar 

  41. Venugopal G (2001) Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries. J Power Sourc 101:231–237

    Article  Google Scholar 

  42. Feng X, Fang M, He X, Ouyang M, Lu L, Wang H, Zhang M (2014) Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J Power Sourc 255:294–301

    Article  Google Scholar 

  43. Ping P, Wang Q, Huang P, Sun J, Chen C (2014) Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method. Appl Energy 129:261–273

    Article  Google Scholar 

  44. Mao B, Chen H, Cui Z, Wu T, Wang Q (2018) Failure mechanism of the lithium ion battery during nail penetration. Int J Heat Mass Transf 122:1103–1115

    Article  Google Scholar 

  45. Feng X, He X, Ouyang M, Lu L, Wu P, Kulp C, Prasser SJAE (2015) Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNixCoyMnzO2 large format lithium ion battery. Appl Energy 154:74–91

    Article  Google Scholar 

  46. Wang H, Tang A, Huang K (2011) Oxygen evolution in overcharged LixNi1/3Co1/3Mn1/3O2 electrode and its thermal analysis kinetics. Chin J Chem 29:1583–1588

    Article  Google Scholar 

  47. Essl C, Golubkov AW, Fuchs AJJOTES (2020) Comparing different thermal runaway triggers for two automotive lithium-ion battery cell types. J Electrochem Soc 167:130542

    Article  Google Scholar 

  48. Röder P, Baba N, Wiemhöfer HD (2014) A detailed thermal study of a Li[Ni0.33Co0.33Mn0.33]O2/LiMn2O4-based lithium ion cell by accelerating rate and differential scanning calorimetry. J Power Sourc 248:978–987

    Article  Google Scholar 

  49. MacNeil DD, Dahn JR (2001) The reaction of charged cathodes with nonaqueous solvents and electrolytes. J Electrochem Soc 148:A1205–A1210

    Article  Google Scholar 

  50. Qin P, Sun J, Wang Q (2021) A new method to explore thermal and venting behavior of lithium-ion battery thermal runaway. J Power Sourc 486:229357

    Article  Google Scholar 

  51. Liu T, Tao C, Wang X (2020) Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules. Appl Energy 267:115087

    Article  Google Scholar 

  52. Lei B, Zhao W, Ziebert C, Uhlmann N, Rohde M, Seifert H (2017) Experimental analysis of thermal runaway in 18650 cylindrical Li-ion cells using an accelerating rate calorimeter. Batteries 3:14

    Article  Google Scholar 

  53. Zhong G, Mao B, Chao W, Lin J, Xu K, Sun J et al (2019) Thermal runaway and fire behavior investigation of lithium ion batteries using modified cone calorimeter. J Therm Anal Calorim 135:2879–2889

    Article  Google Scholar 

  54. Liu P, Li Y, Mao B, Chen M, Huang Z, Wang Q (2021) Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery. Appl Therm Eng 192:116949

    Article  Google Scholar 

  55. Russo P, Di Barib C, Mazzaroc M, De Rosac A, Morriellod I (2018) Effective fire extinguishing systems for lithium-ion battery, chemical. Eng Trans 67:727–732

    Google Scholar 

  56. Huang P, Wang Q, Li K, Ping P, Sun J (2015) The combustion behavior of large scale lithium titanate battery. Sci Rep 5:1–12

    Google Scholar 

  57. Shan T, Wang Z, Zhu X, Wang H, Zhou Y, Wang Y, Zhang J, Sun Z (2022) Explosion behavior investigation and safety assessment of large-format lithium-ion pouch cells. J Energy Chem. https://doi.org/10.1016/j.jechem.2022.04.018

    Article  Google Scholar 

  58. Babrauskas V, Peacock RD (1992) Heat release rate: The single most important variable in fire hazard. Fire Saf J 18:255–272

    Article  Google Scholar 

  59. Mao B, Liu C, Yang K, Li S, Liu P, Zhang M, Meng X, Gao F, Duan Q, Wang Q, Sun J (2021) Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode. Renew Sustain Energy Rev 139:110717

    Article  Google Scholar 

  60. Zhang L, Li Y, Duan Q, Chen M, Xu J, Zhao C, Sun J, Wang Q (2020) Experimental study on the synergistic effect of gas extinguishing agents and water mist on suppressing lithium-ion battery fires. J Energy Storage 32:101801

    Article  Google Scholar 

  61. Peng Y, Yang L, Ju X, Liao B, Ye K, Li L, Cao B, Ni Y (2020) A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode. J Hazard Mater 381:120916

    Article  Google Scholar 

  62. Ribière P, Grugeon S, Morcrette M, Boyanov S, Laruelle S, Marlair G (2012) Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ Sci 5:5271–5280

    Article  Google Scholar 

  63. Al-Hallaj S, Selman JR (2002) Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications. J Power Sourc 110:341–348

    Article  Google Scholar 

  64. Feng X, Sun J, Ouyang M, Wang F, He X, Lu L, Peng H (2015) Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sourc 275:261–273

    Article  Google Scholar 

  65. Larsson F, Bertilsson S, Furlani M, Albinsson I, Mellander BEJJOPS (2018) Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing. J Power Sourc 373:220–231

    Article  Google Scholar 

  66. Larsson F, Mellander BE (2017) Lithium-ion batteries used in electrified vehicles—general risk assessment and construction guidelines from a fire and gas release perspective. RISE Research Institutes of Sweden, p. 41.

  67. Zhang Q, Niu J, Zhao Z, Wang Q (2022) Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states. J Energy Storage 45:103759

    Article  Google Scholar 

  68. https://www.sohu.com/a/463618993_100044558. Accessed 29 April 2021.

  69. Sun J, Li J, Zhou T, Yang K, Wei S, Tang N, Dang N, Li H, Qiu X, Chen L (2016) Toxicity, a serious concern of thermal runaway from commercial Li-ion battery. Nano Energy 27:313–319

    Article  Google Scholar 

  70. Lecocq A, Eshetu GG, Grugeon S, Martin N, Laruelle S, Marlair G (2016) Scenario-based prediction of Li-ion batteries fire-induced toxicity. J Power Sourc 316:197–206

    Article  Google Scholar 

  71. Kuligowski ED (2009) Compilation of data on the sublethal effects of fire effluent. NIST Tech Note 1644:18

    Google Scholar 

  72. Kawamura T, Okada S, Yamaki J-I (2006) Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. J Power Sourc 156:547–554

    Article  Google Scholar 

  73. Yang H, Zhuang GV, Ross PN (2006) Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J Power Sourc 161:573–579

    Article  Google Scholar 

  74. ISO 13571 (2012) Life-threatening components of fire-Guidelines for the estimation of time to compromised tenability in fires, IX-ISO, 2–23.

  75. Zhang L, Duan Q, Liu Y, Xu J, Sun J, Xiao H, Wang Q (2021) Experimental investigation of water spray on suppressing lithium-ion battery fires. Fire Saf J 120:103117

    Article  Google Scholar 

  76. Wang Q, Li K, Wang Y, Chen H, Duan Q, Sun J (2018) The efficiency of dodecafluoro-2-methylpentan-3-one on suppressing the lithium ion battery fire. J Electrochem Energy Convers Storage 15:041001

    Article  Google Scholar 

  77. Liu Y, Duan Q, Li K, Chen H, Wang Q (2018) Experimental study on fire extinguishing of large-capacity lithium-ion batteries by various fire extinguishing agents. Energy Storage Sci Technol 7:1105–1112

    Google Scholar 

  78. Xu J, Guo P, Duan Q, Yu X, Zhang L, Liu Y, Wang Q (2020) Experimental study of the effectiveness of three kinds of extinguishing agents on suppressing lithium-ion battery fires. Appl Therm Eng 171:115076

    Article  Google Scholar 

  79. Said AO, Stoliarov SI (2021) Analysis of effectiveness of suppression of lithium ion battery fires with a clean agent. Fire Saf J 121:103296

    Article  Google Scholar 

  80. Liu Y, Duan Q, Xu J, Chen H, Lu W, Wang Q (2018) Experimental study on the efficiency of dodecafluoro-2-methylpentan-3-one on suppressing lithium-ion battery fires. RSC Adv 8:42223–42232

    Article  Google Scholar 

  81. Huang Z, Liu P, Duan Q, Zhao C, Wang Q (2021) Experimental investigation on the cooling and suppression effects of liquid nitrogen on the thermal runaway of lithium ion battery. J Power Sourc 495:229795

    Article  Google Scholar 

  82. Zhang X, Zhang KJ, Wang HJ et al (2021) Research on fire protection system technology for lithium battery based on liquid nitrogen fire extinguishing. Distrib Utilization 38:32–39

    Google Scholar 

  83. Edison C (2017) Considerations for ESS fire safety. DNV GL, Oslo, Norway

    Google Scholar 

  84. Rao H, Lou X-F, Liu An, Wang Z-H et al (2021) Study on comparative fire extinguishing tests between ternary lithium battery cabin and lithium iron phosphate battery cabin of electric ships. Fire Sci Technol 40:433–437

    Google Scholar 

  85. Saito N, Ogawa Y, Saso Y, Liao C, Sakei R (1996) Flame-extinguishing concentrations and peak concentrations of N2, Ar, CO2 and their mixtures for hydrocarbon fuels. Fire Saf J 27:185–200

    Article  Google Scholar 

  86. Li Y, Yu D, Zhang S, Hu Q, Liu X, Wang J (2015) On the fire extinguishing tests of typical lithium ion battery. J Saf Environ 15:120–125

    Google Scholar 

  87. Robin ML (1998) Suppression of class a fires with HFC-227ea. Process Saf Prog 17:209–212

    Article  Google Scholar 

  88. Hynes RG, Mackie JC, Masri AR (1999) Sample probe measurements on a hydrogen-ethane-air-2-H-heptafluoropropane flame. Energy Fuels 13:485–492

    Article  Google Scholar 

  89. Hynes RG, Mackie JC, Masri AR (1998) Inhibition of premixed hydrogen-air flames by 2-H heptafluoropropane. Combust Flame 113:554–565

    Article  Google Scholar 

  90. Si RJ, Liu DQ, Xue SQ (2018) Experimental study on fire and explosion suppression of self-ignition of lithium ion battery. Procedia Eng 211:629–634

    Article  Google Scholar 

  91. Pagliaro JL, Linteris GT (2017) Hydrocarbon flame inhibition by C6F12O (Novec 1230): unstretched burning velocity measurements and predictions. Fire Saf J 87:10–17

    Article  Google Scholar 

  92. Xu W, Jiang Y, Ren X (2016) Combustion promotion and extinction of premixed counterflow methane/air flames by C6F12O fire suppressant. J Fire Sci 34:289–304

    Article  Google Scholar 

  93. Liu Y, Duan Q, Xu J, Li H, Sun J, Wang Q (2020) Experimental study on a novel safety strategy of lithium-ion battery integrating fire suppression and rapid cooling. J Energy Storage 28:101185

    Article  Google Scholar 

  94. L. Zhang, Yongqi Li, Qingsong Wang et al. (2022) Experimental study on the efficiency of dodecafluoro-2-methylpentan-3-one on suppressing large-scale battery module fire. Fire Technol. under review.

  95. Huang Q, Tao FB, Liu Y et al (2020) Study on performance of gas-liquid extinguishing agent for lithium iron phosphate battery modules. China Saf Sci J 30:53–59

    Google Scholar 

  96. He YS, JJ. S, HB. Wang, (2019) Study on extinguishing 21700 lithium battery fire with different new clean gas extinguishing agents under low pressure. J Saf Sci Technol 15:53–58

    Google Scholar 

  97. Sehmbey MS, Chow LC, Hahn OJ, Pais MR, Transfer H (1995) Effect of spray characteristics on spray cooling with liquid nitrogen. J Thermophys Heat Transfer 9:757–765

    Article  Google Scholar 

  98. Kumari C, Kumar A, Sarangi SK, Thirugnanam AJ (2018) An experimental and numerical study on liquid nitrogen spray cooling for cryotherapy. Cryobiology 80:179

    Article  Google Scholar 

  99. Huaxiang L, Guowei Z, Boyan J, Guoqing Z, Dong G, Peng Z (2020) Research on extinguishing characteristics of liquid nitrogen in urban underground utility tunnel. China Saf Sci J 30:143

    Google Scholar 

  100. Shi GQ, Ding PX, Guo Z, Wang YM (2019) Modeling temperature distribution upon liquid-nitrogen injection into a self-heating coal mine goaf. Process Saf Environ Prot 126:278–286

    Article  Google Scholar 

  101. Molina MJ, Rowland FS (1974) Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature 249:810–812

    Article  Google Scholar 

  102. Zhu CG, Lü C, Wang J (2012) Evaluation of aerosol fire extinguishing agent using a simple diffusion model. Math Probl Eng 2012:587–612

    Article  Google Scholar 

  103. Yan Y, Han Z, Du Z, Zhao L, Cong X (2017) New type pyrotechnically generated aerosol extinguishing agents containing phosphorus. J Clean Prod 154:151–158

    Article  Google Scholar 

  104. Senecal JA (1992) Halon replacement: the law and the options. Plant/Operations Prog 11:182–186

    Article  Google Scholar 

  105. Egelhaaf M, Kress D, Wolpert D, Lange T, Justen R, Wilstermann H (2013) Fire fighting of Li-ion traction batteries. SAE Int J Altern Powertrains 2:37–48

    Article  Google Scholar 

  106. Andersson P, Arvidson M, Evegren F, Jandali M, Larsson F, Rosengren M (2018) Lion fire: extinguishment and mitigation of fires in Li-ion batteries at sea, RISE Report 77.

  107. Ditch B, De Vries J (2013) Flammability characterization of lithium-ion batteries in bulk storage, FM Global, London, England.

  108. Said AO, Garber A, Peng Y, Stoliarov SI (2021) Experimental investigation of suppression of 18650 lithium ion cell array fires with water mist. Fire Technol. https://doi.org/10.1007/s10694-021-01151-9

    Article  Google Scholar 

  109. Zhou Y, Wang Z, Gao H, Wan X, Qiu H, Zhang J, Di J (2021) Inhibitory effect of water mist containing composite additives on thermally induced jet fire in lithium-ion batteries. J Therm Anal Calorim 147(3):2171–2185

    Article  Google Scholar 

  110. Luo W-T, Zhu S-B, Gong J-H, Zhou Z (2018) Research and development of fire extinguishing technology for power lithium batteries. Procedia Eng 211:531–537

    Article  Google Scholar 

  111. https://www.sohu.com/a/102269870_117058. Accessed 18 July 2016.

  112. Xu C, Ouyang M, Lu L et al (2017) Preliminary study on the mechanism of lithium ion battery pack under water immersion. ECS Trans 77:209

    Article  Google Scholar 

  113. Bisschop R, Willstrand O, Rosengren M (2020) Handling lithium-ion batteries in electric vehicles: preventing and recovering from hazardous events. Fire Technol 56:2671–2694

    Article  Google Scholar 

  114. Cablé A, Chetehouna K, Gascoin N, Settar A, Van Herpe K, Kadoche M (2019) Experimental and numerical study of sprinkler fire protection systems: effect of initial pressure on system performance. J Loss Prev Process Ind 60:76–86

    Article  Google Scholar 

  115. NFPA 750 N (2003) Standard on water mist fire protection systems. National Fire Protection Association, Edition.

  116. Mawhinney JR, Richardson JK (1997) A review of water mist fire suppression research and development. Fire Technol 1996(33):54–90

    Article  Google Scholar 

  117. Santangelo PE (2010) Characterization of high-pressure water-mist sprays: experimental analysis of droplet size and dispersion. Exp Therm Fluid Sci 34:1353–1366

    Article  Google Scholar 

  118. Zhang Q, Cao W, Bai W (2017) Experimental study on inhibition of water mist on thermal runaway of lithium ion battery. Fire Saf Sci 26:239–243

    Google Scholar 

  119. Xu J, Duan Q, Zhang L, Liu Y, Zhao C, Wang Q (2022) Experimental study of the cooling effect of water mist on 18650 lithium-ion battery at different initial temperatures. Process Saf Environ Prot 157:156–166

    Article  Google Scholar 

  120. Li G, Wu JY, Zheng H, Wang TH, Lu HF, Jin Y (2021) Fire extinguishing effect of water mist with different pressures on LFP battery module. High Voltage Eng 47:1002–1011

    Google Scholar 

  121. Zhao LT, Jin Y, Zhao ZX, Sun L, Guo DL, Liu Y (2021) Thermal runaway characteristics of lithium iron phosphate battery modules under overcharge and water mist fire extinguishing effect. Electric Power Eng Technol 40:195–207

    Google Scholar 

  122. Cui Y, Liu J (2021) Research progress of water mist fire extinguishing technology and its application in battery fires. Process Saf Environ Prot 149:559–574

    Article  Google Scholar 

  123. Zhang Y, Zhu S, Zhuang W (2021) Test and research on suppressing fire of lithium-ion battery with water mist containing additive. J Phys: Conf Ser 1827:012042

    Google Scholar 

  124. Zhu M-X, Zhu S-B, Gong J-H, Zhou Z (2018) Experimental study on fire and explosion characteristics of power lithium batteries with surfactant water mist. Procedia Eng 211:1083–1090

    Article  Google Scholar 

  125. Zhu MX, Zhu SB, Luo WT (2018) Study on fire suppression of lithium batteries with surfactant water mist. Fire Sci Technol 37:799–803

    Google Scholar 

  126. Zhang QS, Cheng XJ, Bai W (2018) Analysis on fire suppression performance of water mist with compound additive on lithium battery fire. Fire Sci Technol 37: 1211–1214

    Google Scholar 

  127. Zhang T, Han Z, Du Z, Zhang Z, Liu K (2016) Application of thermal mechanism to evaluate the effectiveness of the extinguishment of CH4/air cup-burner flame by water mist with additives. Int J Hydrog Energy 41:15078–15088

    Article  Google Scholar 

  128. Koshiba Y, Okazaki S, Ohtani H (2016) Experimental investigation of the fire extinguishing capability of ferrocene-containing water mist. Fire Saf J 83:90–98

    Article  Google Scholar 

  129. Man C, Shunbing Z, Litao JIA, Xiaoli WU (2014) Surfactant-containing water mist suppression pool fire experimental analysis. Procedia Eng 84:558–564

    Article  Google Scholar 

  130. Joseph P, Nichols E, Novozhilov V (2013) A comparative study of the effects of chemical additives on the suppression efficiency of water mist. Fire Saf J 58:221–225

    Article  Google Scholar 

  131. Bin-bin W, Guang-xuan L (2013) Comparison tests determine the ratio between in the constituent the compound additive and experimental study on fire extinguishing of water mist with this multi-component additive. Procedia Eng 52:428–434

    Article  Google Scholar 

  132. Lv D, Tan W, Zhu G, Liu L (2019) Gasoline fire extinguishing by 07 MPa water mist with multicomponent additives driven by CO2. Process Saf Environ Prot 129:168–175

    Article  Google Scholar 

  133. Hazard Control Technologies Inc. (2018) Material safety data sheet F-500 multi-purpose encapsulator agent.

  134. Chris L (2001) Fire cause & fire debris analysis (a review: 1998 to 2001), In: Proceedings of the 13th INTERPOL Forensic Science Symposium.

  135. Pane L, Mariottini GL, Giacco E (2015) Ecotoxicological assessment of the micelle encapsulator F-500. Ecotoxicol Environ Saf 118:167–176

    Article  Google Scholar 

  136. Bisschop R, Andersson P, Forsberg C, Hynynen J (2021) Lion fire II-extinguishment and mitigation of fires in lithium-ion batteries at sea.

  137. Stern J, Routley JG (1997) Class A foam for structural firefighting. Federal Emergency Management Agency, US Fire Administration, USA

    Google Scholar 

  138. Wang K, Fang J, Shah HR, Mu S, Lang X, Wang J, Zhang Y (2020) A theoretical and experimental study of extinguishing compressed air foam on an n-heptane storage tank fire with variable fuel thickness. Process Saf Environ Prot 138:117–129

    Article  Google Scholar 

  139. Tsai TP, Yang HC, Liao PH (2011) The application of concurrent engineering in the installation of foam fire extinguishing piping system. Procedia Eng 14:1920–1928

    Article  Google Scholar 

  140. Yang F, Sun H, Mao Z, Tao Y, Zhang J (2021) Facile fabrication of EVA cellular material with hydrophobic surface, high solar reflectance and low thermal conductivity via chemical foaming. Microporous Mesoporous Mater 328:111460

    Article  Google Scholar 

  141. Chen T, Fu X-C, Bao Z-M, Xia J-J, Wang R-J (2018) Experimental study on the extinguishing efficiency of compressed air foam sprinkler system on oil pool fire. Procedia Eng 211:94–103

    Article  Google Scholar 

  142. Xu Z, Guo X, Yan L, Kang W (2020) Fire-extinguishing performance and mechanism of aqueous film-forming foam in diesel pool fire. Case Stud Therm Eng 17:100578

    Article  Google Scholar 

  143. Cui Y, Liu J, Han X, Sun S, Cong B (2022) Full-scale experimental study on suppressing lithium-ion battery pack fires from electric vehicles. Fire Saf J 129:103562

    Article  Google Scholar 

  144. Chen ZM, Wang XJ (2021) Experimental study on fire fighting of lithium battery in confined space. Fire Prot Today 6:4–8

    MathSciNet  Google Scholar 

  145. He YH, Sun Q, Xing H et al (2019) Cationic–anionic fluorinated surfactant mixtures based on short fluorocarbon chains as potential aqueous film-forming foam. J Dispers Sci Technol 40:319–331

    Article  Google Scholar 

  146. Zhang Y, Zou G, Gao Y et al (2012) Experimental research on deflagration flame propagation suppression by ABC powder. J Harbin Eng Univ 33:449–453

    Google Scholar 

  147. Zhao Q, Chen X, Yang M, Zhang H, Huang C, Dai H, Li Y, Liu J, Zhu H (2021) Suppression characteristics and mechanisms of ABC powder on methane/coal dust compound deflagration. Fuel 298:120831

    Article  Google Scholar 

  148. Luo Z, Wang T, Tian Z, Cheng F, Deng J, Zhang Y (2014) Experimental study on the suppression of gas explosion using the gas–solid suppressant of CO2/ABC powder. J Loss Prev Process Ind 30:17–23

    Article  Google Scholar 

  149. Su C-H, Chen C-C, Liaw H-J, Wang S-C (2014) The assessment of fire suppression capability for the ammonium dihydrogen phosphate dry powder of commercial fire extinguishers. Procedia Eng 84:485–490

    Article  Google Scholar 

  150. Huang L, Jiang H, Zhang T, Shang S, Gao W (2021) Effect of superfine KHCO3 and ABC powder on ignition sensitivity of PMMA dust layer. J Loss Prev Process Ind 72:104567

    Article  Google Scholar 

  151. Zhao J, Fu Y, Yin Z, Xing H, Lu S, Zhang H (2020) Preparation of hydrophobic and oleophobic fine sodium bicarbonate by gel-sol-gel method and enhanced fire extinguishing performance. Mater Des 186:108331

    Article  Google Scholar 

  152. Zhang ZW (2013) Application of D-class dry powder fire extinguishing system for aluminum alkyls chemical related fire protection. Ind Water Wastewater 44:85–88

    Google Scholar 

  153. Krasnyansky M (2006) Remote extinguishing of large fires with powder aerosols. Fire Mater: Int J 30:371–382

    Article  Google Scholar 

  154. Meng X, Yang K, Zhang M, Gao F, Liu Y, Duan Q, Wang Q (2020) Experimental study on combustion behavior and fire extinguishing of lithium iron phosphate battery. J Energy Storage 30:101532

    Article  Google Scholar 

  155. Zhao J, Xue F, Fu Y, Cheng Y, Yang H, Lu S (2021) A comparative study on the thermal runaway inhibition of 18650 lithium-ion batteries by different fire extinguishing agents. iScience 24:102854

    Article  Google Scholar 

  156. Long RT, Misera AM (2019) Sprinkler protection guidance for lithium-ion based energy storage systems. Fire Protection Research Foundation, MD

  157. Taniguchi K, Iwasaki M, Kouga Y (2018) Fire detection tube used for automatic fire extinguishing device and the automatic fire extinguishing device: U.S. Patent 9,962,568, 5–8.

  158. Li YL, Duan XP (2018) Application of automatic detecting and fire extinguishing system with fire trace tube in port engineering. Constr Design Eng 3:96–99

    Google Scholar 

  159. Li K, Wang Q, Sun J (2018) Research on fire extinguishing technology of lithium ion battery based on fire detection tube. Fire Saf Sci 27:9

    Google Scholar 

  160. Panão MRO, Guerreiro JPPV, Moreira ALN (2012) Microprocessor cooling based on an intermittent multijet spray system. Int J Heat Mass Transf 55:2854–2863

    Article  Google Scholar 

  161. Panão MRO, Correia AM, Moreira ALN (2012) High-power electronics thermal management with intermittent multijet sprays. Appl Therm Eng 37:293–301

    Article  Google Scholar 

  162. Panão MRO, Moreira ALN (2009) Intermittent spray cooling: a new technology for controlling surface temperature. Int J Heat Fluid Flow 30:117–130

    Article  Google Scholar 

  163. Liu Y, Gao Q, Wang G, Zhang T, Zhang Y (2021) Experimental study on active control of refrigerant emergency spray cooling of thermal abnormal power battery. Appl Therm Eng 182:116172

    Article  Google Scholar 

  164. Meng X, Li S, Fu W, Chen Y, Duan Q, Wang Q (2022) Experimental study of intermittent spray cooling on suppression for lithium iron phosphate battery fires. eTransportation 11:100142

    Article  Google Scholar 

  165. An S, Lee MW, Yarin AL et al (2018) A review on corrosion-protective extrinsic self-healing: comparison of microcapsule-based systems and those based on core-shell vascular networks. Chem Eng J 344:206–220

    Article  Google Scholar 

  166. Bai F, Chen M, Song W, Yu Q, Li Y, Feng Z, Ding Y (2019) Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate. Energy 167:561–574

    Article  Google Scholar 

  167. Zhang W, Wu L, Du J, Tian J, Li Y, Zhao Y, Wu H, Zhong Y, Cao Y-C, Cheng S (2021) Fabrication of a microcapsule extinguishing agent with a core–shell structure for lithium-ion battery fire safety. Mater Adv 2:4634–4642

    Article  Google Scholar 

  168. Yim T, Park MS, Woo SG, Kwon HK, Yoo JK, Jung YS, Kim KJ, Yu JS, Kim YJ (2015) Self-extinguishing lithium ion batteries based on internally embedded fire-extinguishing microcapsules with temperature-responsiveness. Nano Lett 15:5059–5067

    Article  Google Scholar 

  169. Huang P-H, Chang S-J, Li C-C, Chen C-A (2017) Boehmite-based microcapsules as flame-retardants for lithium-ion batteries. Electrochim Acta 228:597–603

    Article  Google Scholar 

  170. Chen C-A, Li C-C (2018) Microencapsulating inorganic and organic flame retardants for the safety improvement of lithium-ion batteries. Solid State Ionics 323:56–63

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (No.2021YFB2402003) and the Key Research and Development Plan of Anhui Province (No. 202104a07020003), the University Synergy Innovation Program of Anhui Province (No. GXXT-2020-079). Dr. Q.S Wang is supported by Youth Innovation Promotion Association CAS (No.Y201768).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinhua Sun or Qingsong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Jin, K., Sun, J. et al. A Review of Fire-Extinguishing Agents and Fire Suppression Strategies for Lithium-Ion Batteries Fire. Fire Technol (2022). https://doi.org/10.1007/s10694-022-01278-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10694-022-01278-3

Keywords

Navigation