Skip to main content

Advertisement

Log in

Wind and Fire Coupled Modelling—Part I: Literature Review

  • Review Paper
  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Wind and fire phenomena can together be a devastating force, whether in the case of a building fire, release of smoke in an urban area or forest fire near an urban habitat. Most of the fire phenomena are influenced by the wind, usually for the worse. If we want to understand fires, we have to understand wind as well, and model it appropriately. This modelling is described by the discipline of Computational Wind Engineering, from which we are able to transfer invaluable knowledge to coupled wind-fire analyses. This two-part review is dedicated to such a transfer. In Part I, the authors describe the historical and most current instances of wind and fire coupled modelling, referred to as simple models, in situ measurements, wind tunnel experiments or numerical studies with CFD. The review is subdivided into six categories, namely flame behaviour in wind conditions, indoor flows, natural smoke ventilators, tunnel ventilation, wildfires and firebrand transport, and urban dispersion of smoke. Besides flame behaviour, all remaining topics are covered, to the best of the authors’ knowledge, with multiple references to valuable experimental and numerical studies. In Part II of the review, the authors describe the best practices of Computational Wind Engineering, that may be transferred to fire-oriented numerical studies. This part provides good practice guidelines, reference studies and a proposal for the optimisation of the simulation procedure for coupled wind and fire models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

(©Elsevier, reproduced with permission)

Similar content being viewed by others

Abbreviations

ABL:

Atmospheric boundary layer

CFD:

Computational fluid dynamics

CWE:

Computational wind engineering

FDS:

Fire dynamics simulator

FSE:

Fire safety engineering

LES:

Large eddy simulation

NIST:

National Institute of Standards and Technology

NSHEV:

Natural smoke and heat exhaust ventilation

RANS:

Reynolds-averaged Navier–Stokes

WUI:

Wildland urban interface

References

  1. Madrzykowski D, Kerber S, Madrzykowski D (2009) Fire fighting tactics under wind driven conditions: laboratory experiments. In: NIST technical note 1618. National Institute of Standards and Technology, Gaithersburg, MD

  2. Johansson N, Ekholm M (2018) Variation in results due to user effects in a simulation with FDS. Fire Technol 54(1):97–116. https://doi.org/10.1007/s10694-017-0674-y

    Google Scholar 

  3. Blocken B (2014) 50 years of computational wind engineering: past, present and future. J Wind Eng Ind Aerodyn 129:69–102. https://doi.org/10.1016/j.jweia.2014.03.008

    Google Scholar 

  4. Franke J, Hellsten A, Schlünzen H, Carissimo B (2007) Best practice guideline for the CFD simulation of flows in the urban environment. COST Office Brussels

  5. Pitts WM (1991) Wind effects on fires. Prog Energy Combust Sci 17:83–134. https://doi.org/10.1016/0360-1285(91)90017-H

    Google Scholar 

  6. Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. In: USDA Forest Services Research Paper INT-115. U.S. Department of Agriculture, Odgen, Utah, Utah, USA

  7. Tohidi A, Kaye NB (2017) Stochastic modeling of firebrand shower scenarios. Fire Saf J 91:91–102. https://doi.org/10.1016/j.firesaf.2017.04.039

    Google Scholar 

  8. Caton SE, Hakes RSP, Gorham DJ, Zhou A, Gollner MJ (2017) Review of pathways for building fire spread in the wildland urban interface part I: exposure conditions. Fire Technol 53:429–473. https://doi.org/10.1007/s10694-016-0589-z

    Google Scholar 

  9. Yokoi S (1960) Study on the prevention of fire-spread caused by hot upward current. In: Report of the Building Research Institute No. 34

  10. Hu L (2017) A review of physics and correlations of pool fire behaviour in wind and future challenges. Fire Saf J 91:41–55. https://doi.org/10.1016/j.firesaf.2017.05.008

    Google Scholar 

  11. Pitts WM (1989) Assessment of need for and design requirements of a wind tunnel facility to study fire effects of interest to DNA. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  12. Tohidi A, Kaye NB (2016) Highly buoyant bent-over plumes in a boundary layer. Atmos Environ 131:97–114. https://doi.org/10.1016/j.atmosenv.2016.01.046

    Google Scholar 

  13. Tohidi A, Gollner MJ, Xiao H (2018) Fire whirls. Annu Rev Fluid Mech 50:187–213. https://doi.org/10.1146/annurev-fluid-122316-045209

    MathSciNet  MATH  Google Scholar 

  14. Tang W, Gorham DJ, Finney MA, Mcallister S, Cohen J, Forthofer J, Gollner MJ (2017) An experimental study on the intermittent extension of flames in wind-driven fires. Fire Saf J 91:742–748. https://doi.org/10.1016/j.firesaf.2017.03.030

    Google Scholar 

  15. Thomas PH, Hinkley PL, Theobald CR, Simms DL (1963) Investigations into the flow of hot gases in roof venting. Her Majesty’s Stationery Office, London

  16. Morgan J, Marchant EW (1975) Some effects of natural wind on vent operation in shopping malls. In: CIB symposium on the control of smoke movement in building fires, building research establishment

  17. Kandola BS (1978) Wind effects on buildings with varying leakage characteristics—wind-tunnel investigation. J Wind Eng Ind Aerodyn 3:267–284. https://doi.org/10.1016/0167-6105(78)90033-8

    Google Scholar 

  18. Kandola BS (1990) Effects of atmospheric wind on flows through natural convection roof vents. Fire Technol 26:106–120. https://doi.org/10.1007/BF01040176

    Google Scholar 

  19. Marchant EW (1984) Effect of wind on smoke movement and smoke control systems. Fire Saf J 7:55–63. https://doi.org/10.1016/0379-7112(84)90008-0

    Google Scholar 

  20. Than C-F (1992) Smoke venting by gravity roof ventilators under windy conditions. J Fire Prot Eng 4:1–4. https://doi.org/10.1177/104239159200400101

    Google Scholar 

  21. Kramer C, Gerhardt HJ (1976) Windkrfifte auf flachen und wenig geneigten Dachflfichen. In: Kramer C, Gerhardt HJ (eds) Dokumentation zum 2. Kolloquium uber Industriaerodynamik, Aachen

  22. Kramer C, Gerhardt HJ (1991) Wind pressures on roofs of very low and very large industrial buildings. J Wind Eng Ind Aerodyn 38:285–295. https://doi.org/10.1016/0167-6105(91)90048-2

    Google Scholar 

  23. Kramer C, Gerhardt HJ (1990) Wind effects on heat and smoke control of industrial buildings in case of a fire. J Wind Eng Ind Aerodyn 36:499–508. https://doi.org/10.1016/0167-6105(90)90333-8

    Google Scholar 

  24. Gerhardt HJ (1993) Comments on ‘Some effects of crosswind on ventilators’ by B.K. Ghosh. J Wind Eng Ind Aerodyn 45(3):271–274. https://doi.org/10.1016/0167-6105(93)90097-8

    Google Scholar 

  25. Gerhardt HJ, Kramer C (1990) Wind climate and smoke control in covered shopping malls. J Wind Eng Ind Aerodyn 36:489–498. https://doi.org/10.1016/0167-6105(90)90332-7

    Google Scholar 

  26. Gerhardt HJ, Kruger O, Wacker J (1999) Small scale experiments to simulate the smoke extraction from large spaces. In: Larsen A, Larose G, Livesey F (eds) Wind engineering into 21st century. Balkema, Rotterdam, Copenhagen, pp 1927–1931

  27. Kramer C, Gerhardt HJ (1993) Preface. J Wind Eng Ind Aerodyn 45:v. https://doi.org/10.1016/0167-6105(93)90095-6

    Google Scholar 

  28. Ingason H, Persson B (1995) Effects of wind on natural fire vents. In: BRANDFORSK Project 055-921; SP Report 1995:04. SP Swedish National Testing and Research Institute, Fire Technology

  29. Poreh M, Trebukov S (2000) Wind effects on smoke motion in buildings. Fire Saf J 35:257–273. https://doi.org/10.1016/S0379-7112(00)00017-5

    Google Scholar 

  30. Meroney RN (2011) Wind effects on atria fires. J Wind Eng Ind Aerodyn 99:443–447. https://doi.org/10.1016/j.jweia.2010.11.003

    Google Scholar 

  31. Li Y, Delsante A (2001) Natural ventilation induced by combined wind and thermal forces. Build Environ 36:59–71. https://doi.org/10.1016/S0360-1323(99)00070-0

    Google Scholar 

  32. Li M, Gao Z, Ji J, Li K, Sun J (2017) Wind effects on flame projection probability from a compartment with opposing openings. Fire Saf J 91:414–421. https://doi.org/10.1016/j.firesaf.2017.04.037

    Google Scholar 

  33. Hu L, Hu K, Ren F, Sun X (2017) Facade flame height ejected from an opening of fire compartment under external wind. Fire Saf J 92:151–158. https://doi.org/10.1016/j.firesaf.2017.06.008

    Google Scholar 

  34. Kerber S, Madrzykowski D (2009) Fire fighting tactics under wind driven conditions: 7-story building experiments. In: NIST technical note 1629. National Institute of Standards and Technology, Gaithersburg, MD

  35. Barowy A, Madrzykowski D (2012) Simulation of the dynamics of a wind-driven fire in a Ranch-Style House—Texas

  36. Weinschenk C, Beal C, Ezekoye OA (2011) Modeling fan-driven flows for firefighting tactics using simple analytical models and CFD. J Fire Prot Eng 21:85–114. https://doi.org/10.1177/1042391510395694

    Google Scholar 

  37. Węgrzyński W, Krajewski G (2017) Influence of wind on natural smoke and heat exhaust system performance in fire conditions. J Wind Eng Ind Aerodyn 164:44–53. https://doi.org/10.1016/j.jweia.2017.01.014

    Google Scholar 

  38. Węgrzyński W, Krajewski G, Sulik P (2016) Case study 2—production and storage building (Poland). In: 11th conference on performance-based codes and fire safety design methods. SFPE, Warszawa

  39. Węgrzyński W, Krajewski G (2017) Combined wind engineering, smoke flow and evacuation analysis for a design of a natural smoke and heat ventilation system. Proc Eng 172:1243–1251. https://doi.org/10.1016/j.proeng.2017.02.146

    Google Scholar 

  40. Krajewski G, Węgrzyński W (2018) Use of computational fluid dynamics in optimization of natural smoke ventilation from a historical shopping mall—case study. AIP Conf Proc 1922:110009. https://doi.org/10.1063/1.5019112

    Google Scholar 

  41. Węgrzyński W, Krajewski G, Kimbar G (2018) A concept of external aerodynamic elements in improving the performance of natural smoke ventilation in wind conditions. AIP Conf Proc 1922:110006. https://doi.org/10.1063/1.5019109

    Google Scholar 

  42. McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2017) Fire dynamics simulator user’s guide, 6th edn. Natl Inst Stand Technol Spec Publ 1019, NIST, USA. https://doi.org/10.6028/NIST.SP.1019

  43. Rehm RG, McGrattan K, Baum H, Simiu E, (1999) An efficient Large Eddy Simulation algorithm for computational wind engineering: application to surface pressure computations on a single building. In: NIST special publication vol 6371

  44. Król M (2016) Numerical studies on the wind effects on natural smoke venting of atria. Int J Vent 15:67–78. https://doi.org/10.1080/14733315.2016.1173293

    Google Scholar 

  45. Król M, Król A (2017) Multi-criteria numerical analysis of factors influencing the efficiency of natural smoke venting of atria. J Wind Eng Ind Aerodyn 170:149–161. https://doi.org/10.1016/j.jweia.2017.08.012

    Google Scholar 

  46. Li H, Fan C, Wang J (2014) Effects of wind and adjacent high rise on natural smoke extraction in an atrium with pitched roof. APCBEE Procedia, 9:296–301. https://doi.org/10.1016/j.apcbee.2014.01.053

    Google Scholar 

  47. Chow WK, Han SS, Gao Y, Li SS (2007) Performance evaluation on natural smoke venting system in a large cargo hall. In: Proceedings of the 7th Asia-Oceania symposium on fire science and technology, Hong Kong, 20–22 September 2007, paper 31E, p 31E

  48. Chow WK, Liu P, Zou GW (2007) Wind effect on smoke exhaust systems in a Large Cargo Hall with two compartments. Cairns, Australia, pp 1415–1422

  49. Stacy D (2016) Analysis of wind in an FDS simulation. In: SFPE North America conf. and Expo. SFPE, Denver

  50. Mowrer FW (2009) Driving forces for smoke movement and management. Fire Technol 45:147–162. https://doi.org/10.1007/s10694-008-0077-1

    Google Scholar 

  51. Zhang CF, Chen SY, Chow WK (2014) Wind effects on the smoke spread of high-rise buildings. In: The 2014 world congress on advances in civil, environmental, and material research (ACEM14), Busan, Korea

  52. Panindre P, Mousavi NSSS, Kumar S (2017) Positive pressure ventilation for fighting wind-driven high-rise fires: simulation-based analysis and optimization. Fire Saf J 87:57–64. https://doi.org/10.1016/j.firesaf.2016.11.005

    Google Scholar 

  53. Moosavi L, Mahyuddin N, Ab Ghafar N, Azzam Ismail M (2014) Thermal performance of atria: an overview of natural ventilation effective designs. Renew Sustain Energy Rev 34:654–670. https://doi.org/10.1016/j.rser.2014.02.035

    Google Scholar 

  54. Lo SM, Chen D, Yuen KK, Lu W (2002) A numerical study of external smoke spread in designated refuge floor. Build Environ 37:257–268. https://doi.org/10.1016/S0360-1323(01)00026-9

    Google Scholar 

  55. Chow WK, Li J (2010) Numerical simulations on wind-induced aerodynamics for tall buildings with refuge floors. In: The fifth international symposium on computational wind engineering (CWE2010), Chapel Hill, North Carolina, USA, pp 1–8

  56. Cheng CCK, Lam KM, Yuen RKK, Lo SM, Liang J (2007) A study of natural ventilation in a refuge floor. Build Environ 42:3322–3332. https://doi.org/10.1016/j.buildenv.2006.08.031

    Google Scholar 

  57. Cheng CCK, Lam KM, Demirbilek FN (2008) Effects of building wall arrangements on wind-induced ventilation through the refuge floor of a tall building. J Wind Eng Ind Aerodyn 96:656–664. https://doi.org/10.1016/j.jweia.2008.01.009

    Google Scholar 

  58. Chen HXX, Liu NAA, Chow WKK (2011) Wind tunnel tests on compartment fires with crossflow ventilation. J Wind Eng Ind Aerodyn 99:1025–1035. https://doi.org/10.1016/j.jweia.2011.07.006

    Google Scholar 

  59. Chen H, Liu N, Chow WK (2009) Wind effects on smoke motion and temperature of ventilation-controlled fire in a two-vent compartment. Build Environ 44:2521–2526. https://doi.org/10.1016/j.buildenv.2009.04.008

    Google Scholar 

  60. Yi L, Gao Y, Niu JLL, Yang SJJ (2013) Study on effect of wind on natural smoke exhaust of enclosure fire with a two-layer zone model. J Wind Eng Ind Aerodyn 119:28–38. https://doi.org/10.1016/j.jweia.2013.05.005

    Google Scholar 

  61. Huang H, Ooka R, Liu N, Zhang L, Deng Z, Kato S (2009) Experimental study of fire growth in a reduced-scale compartment under different approaching external wind conditions. Fire Saf J 44:311–321. https://doi.org/10.1016/j.firesaf.2008.07.005

    Google Scholar 

  62. Klote JH (216) Smoke control. In: SFPE handbook of fire protection engineering. Springer, New York, NY, pp 1785–1823

  63. Klote JH, Milke JA, Turnbull PG, Kashef A, Ferreira MJ (2012) Handbook of smoke control engineering. ASHRAE

  64. Klote JH (1995) Design of smoke control systems for elevator fire evacuation including wind effects. In: 2nd symposium, American society of mechanical engineers. Baltimore

  65. CEN (2015) prEN 12101-2 smoke and heat control systems part 2: specification for natural smoke and heat exhaust ventilators

  66. Prahl J, Emmons HW (1975) Fire induced flow through an opening. Combust Flame 25:369–385. https://doi.org/10.1016/0010-2180(75)90109-1

    Google Scholar 

  67. DIN 18232-3:1984-09 (1984) Baulicher Brandschutz im Industriebau—Rauch-und Wärmeabzugsanlagen—Rauchabzüge, Prüfungen

  68. Kramer C, Gerhardt HJ, Bösch H, Meessen H (1983) Entersuchungen Ober die aerodynamische Wirksamkeit von RauchabSgen. Schadenprisma 12

  69. BS 7346-1:1990 (1990) Components for smoke and heat control systems. Specification for natural smoke and heat exhaust ventilators

  70. Gerhardt HJ (1993) Extended summary of ‘Der VdS-Ringversuch. Die überprüfung des Prüfstandseinflusses auf die aerodynamische Wirksamkeit von RA’ (The VdS-round-robin test. Testing-station-specific influences on the aerodynamic performance of smoke ventilators) by H. Meessen. J Wind Eng Ind Aerodyn 45(3):309–312. https://doi.org/10.1016/0167-6105(93)90101-S

    Google Scholar 

  71. Ghosh BK (1993) Some effects of crosswind on ventilators. J Wind Eng Ind Aerodyn 45:247–270. https://doi.org/10.1016/0167-6105(93)90096-7

    Google Scholar 

  72. Kramer C, Gerhardt HJ (1993) Aerodynamic efficiency of smoke ventilators—comparison of measurements on full scale and model ventilators. J Wind Eng Ind Aerodyn 45:313–323. https://doi.org/10.1016/0167-6105(93)90102-T

    Google Scholar 

  73. Simon J (1993) Extended summary of smoke ventilators: an approach for the determination of their performances and some results. J Wind Eng Ind Aerodyn 45:339. https://doi.org/10.1016/0167-6105(93)90102-T

    Google Scholar 

  74. Simon J (1993) Methode d’essai aérodynamique et analyse des paramètres géometriques modifiant les performances des exutoires. J Wind Eng Ind Aerodyn 45:325–338. https://doi.org/10.1016/0167-6105(93)90103-U

    Google Scholar 

  75. CEN (2003) EN 12101-2:2003 smoke and heat control systems. Specification for natural smoke and heat exhaust ventilators

  76. UE (2011) Regulation (EU) No 305/2011 of The European Parliament and the Council of 9th March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC, pp 5–43

  77. NFPA (2015) NFPA 204 Standard for smoke and heat venting

  78. McGuire JH (1967) Smoke movement in buildings. Fire Technol 3:163–174. https://doi.org/10.1007/BF02601782

    Google Scholar 

  79. Morgan HP, Hansell GO (1988) Atrium building smoke flows. Fire Saf J 13:221–224. https://doi.org/10.1016/0379-7112(88)90018-5

    Google Scholar 

  80. Law M (1986) A note on smoke plumes from fires in multi-level shopping malls. Fire Saf J 10:197–202

    Google Scholar 

  81. CEN (2005) CEN/TR 12101-5:2005 smoke and heat control systems. Guidelines on functional recommendations and calculation methods for smoke and heat exhaust ventilation systems

  82. DIN (2007) DIN 18232 Teil 2. Baulicher Brandschutz im Industriebau. Rauch- und Warmeabzugsaniagen. Rauchabzuge. Bemessung, Anforderungen und Einbau

  83. VDI (2006) VDI 6019 Blatt 1 Ingenieurverfahren zur Bemessung der Rauchableitung aus Gebäuden Brandverläufe, Überprüfung der Wirksamkeit

  84. Klote JH, Milke JA (2002) Principles of smoke management, American society of heating. Refrigerating and Air-conditioning Engineers Inc., Atlanta

    Google Scholar 

  85. Carvel R, Marlair G (2005) A history of fire incidents in tunnels. In: The handbook of tunnel fire safety. Thomas Telford Publishing, pp 1–41

  86. Madsen H (2000) Fire in the seljestad tunnel (Norway). In: Colombo AG (ed) NEDIES Project: lessons learnt from tunnel accidents, pp 15–18

  87. Nilsen A, Lindvik PA, Log T (2001) Full-scale fire testing in sub sea public road tunnels. In: Proceedings of the 9th international Interflam conference, Edinburgh, Scotland, pp 913–924

  88. Yang SC, Chuah YK (2017) A study of wind effects on smoke extraction strategies in vehicle tunnels. Tunn Undergr Sp Technol 67:8–26. https://doi.org/10.1016/j.tust.2017.04.011

    Google Scholar 

  89. Sztarbała G (2012) Oddziaływanie wiatru na przepływ powietrza w tunelu w warunkach pożaru. Instytut Techniki Budowlanej

  90. Sztarbała G, Lipecki T, Bęc J (2013) Wind influence on air flow inside road tunnels. In: 6th European and African conference on wind engineering, Cambridge, pp 1–9

  91. Bęc J, Lipecki T, Błazik-Borowa E (2011) Research on wind structure in the wind tunnel of wind engineering laboratory of Cracow University of Technology. J Phys Conf Ser 318:72003. https://doi.org/10.1088/1742-6596/318/7/072003

    Google Scholar 

  92. Wang HY (2012) Numerical and theoretical evaluations of the propagation of smoke and fire in a full-scale tunnel. Fire Saf J 49:10–21. https://doi.org/10.1016/j.firesaf.2011.12.012

    Google Scholar 

  93. Fletcher DF, Kent JH, Apte VB, Green AR (1994) Numerical simulations of smoke movement from a pool fire in a ventilated tunnel. Fire Saf J 23:305–325. https://doi.org/10.1016/0379-7112(94)90033-7

    Google Scholar 

  94. Gannouni S, Ben Maad R (2016) Numerical analysis of smoke dispersion against the wind in a tunnel fire. J Wind Eng Ind Aerodyn 158:61–68. https://doi.org/10.1016/j.jweia.2016.09.009

    Google Scholar 

  95. Suban A, Petelin S, Vidmar P (2015) Effect of gusty wind on road tunnel safety. Stroj Vestnik/J Mech Eng 61:421–431. https://doi.org/10.5545/sv-jme.2015.2433

    Google Scholar 

  96. Tanaka F, Kawabata N, Ura F (2016) Effects of a transverse external wind on natural ventilation during fires in shallow urban road tunnels with roof openings. Fire Saf J 79:20–36. https://doi.org/10.1016/j.firesaf.2015.11.004

    Google Scholar 

  97. Tanaka F, Kawabata N, Ura F (2017) Smoke spreading characteristics during a fire in a shallow urban road tunnel with roof openings under a longitudinal external wind blowing. Fire Saf J 90:156–168. https://doi.org/10.1016/j.firesaf.2017.03.005

    Google Scholar 

  98. Król M, Król A, Koper P, Wrona P (2017) Full scale measurements of the operation of fire ventilation in a road tunnel. Tunn Undergr Sp Technol 70:204–213. https://doi.org/10.1016/j.tust.2017.07.016

    Google Scholar 

  99. van der Heijden MGM, Loomans MGLC, Lemaire AD, Hensen JLM (2013) Fire safety assessment of semi-open car parks based on validated CFD simulations. Build Simul 6:385–394. https://doi.org/10.1007/s12273-013-0118-7

    Google Scholar 

  100. Road and Transportation Research Association (2006) Regulations for the equipment and operation of road tunnels. RABT

  101. RVS 09.02.31 tunnel ventilation—basic principles (2008)

  102. ASTRA 13001 (2008) Ventilation des tunnels routiers. Choix du systeme, dimensionnement et equipement

  103. Höpperger B, Croll J (2016) How to compute relevant meteorological portal differemces. In: Tunnel safety and ventilation conference, 25–26 April 2016, Graz, Austria, pp 149–156

  104. PIARC Technical Committee 3.3 Road Tunnel Operation (2008) Road tunnels: a guide to optimising the air quality impact upon the environment

  105. Yousaf R, Gehrig S, Buchmann R (2014) Evaluating smoke recirculation potential at the portal of a swiss road tunnel in case of a fire. In: 7th international conference on tunnel safety and ventilation, pp 118–125

  106. Baumann HO (1979) Air recirculation between tunnel portals. In: 3rd int. symposium on the aerodynamics and ventilation of vehicle tunnels, Sheffield

  107. Mell WE, Manzello SL, Maranghides A, Butry D, Rehm RG (2010) The wildland-urban interface fire problem—current approaches and research needs. Int J Wildl Fire 19:238–251. https://doi.org/10.1071/WF07131

    Google Scholar 

  108. Hakes RSP, Caton SE, Gorham DJ, Gollner MJ (2017) A review of pathways for building fire spread in the wildland urban interface part II: response of components and systems and mitigation strategies in the United States. Fire Technol 53:475–515. https://doi.org/10.1007/s10694-016-0601-7

    Google Scholar 

  109. Rothermel RC, Anderson HE (1966) Fire spread characteristics determined in the laboratory. In: U.S. Forest Service Research Paper INT-30

  110. Anderson HE (1968) Fire spread and flame shape. Fire Technol 4:51–58. https://doi.org/10.1007/BF02588606

    Google Scholar 

  111. Weise DR, Biging GS (1994) Effects of wind velocity and slope on flame properties. Can J For Res 26:1849–1858. https://doi.org/10.1139/x26-210

    Google Scholar 

  112. Sugawa O, Momita D, Takahashi W (1997) Flow behavior of ejected fire flame/plume from an opening effected by external side wind. In: Fire safety science-proceedings of the fifth international symposium, International Association for Fire Safety Science, Melbourne, Australia, pp 249–260

  113. Manzello SL (2014) Enabling the investigation of structure vulnerabilities to wind-Driven firebrand showers in wildland-Urban Interface (WUI) fires. In: Fire safety science-proceedings of the eleventh international symposium. International Association for Fire Safety Science, Christchurch, New Zealand, pp 83–96

  114. Manzello SL, Suzuki S (2014) Exposing decking assemblies to continuous wind-driven firebrand showers. In: Fire safety science-proceedings of the eleventh international symposium. International Association for Fire Safety Science, Christchurch, New Zealand, pp 1339–1352

  115. Suzuki S, Manzello SL, Kagiya K, Suzuki J, Hayashi Y (2015) Ignition of mulch beds exposed to continuous wind-driven firebrand showers. Fire Technol 51:905–922. https://doi.org/10.1007/s10694-014-0425-2

    Google Scholar 

  116. Lozano J, Tachajapong W, Pan H, Swanson A, Kelley C, Princevac M, Mahalingam S (2008) Experimental investigation of the velocity field in a controlled wind-aided propagating fire using particle image velocimetry. In: Fire safety science–proceedings of the ninth international symposium. International Association for Fire Safety Science, Karlsruhe, Germany, pp 255–266

  117. Kwok KCS, He Y, Douglas GB (2010) Wind impacts on fire spread and structural failure during bushfire in complex terrain. In: 9th UK conference on wind engineering, Bristol, pp 1–12

  118. He Y, Kwok KCS, Douglas GB, Razali IM (2011) Numerical investigation of bushfire-wind interaction and its impact on building structure. In: Fire safety science-proceedings of the tenth international symposium, University of Canterbury, New Zealand, pp 1449–1462

  119. Kwok K, He K, Razali I, Douglas G (2011) Bushfire-induced winds and their impacts on buildings. In: Proceedings of the 13th international conference on wind engineering. Multi-Science Publishing, Amsterdam, Netherlands

  120. Mell W, Jenkins MA, Gould J, Cheney P (2007) A physics-based approach to modelling grassland fires. Int J Wildl Fire 16:1–22. https://doi.org/10.1071/WF06002

    Google Scholar 

  121. Mell W, Maranghides A, McDermott R, Manzello SL (2009) Numerical simulation and experiments of burning douglas fir trees. Combust Flame 156:2023–2041. https://doi.org/10.1016/j.combustflame.2009.06.015

    Google Scholar 

  122. McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2015) Fire dynamics simulator technical reference guide. Volume 3: validation, 6th edn. NIST Special Publication 1018-3

  123. Meroney RN (2007) Numerical prediction of fire propagation in idealized wildland and urban canopies numerical prediction of fire propagation in idealized wildland and urban canopies. In: 12 international conference on wind engineering, Cairns, Australia, pp 1295–1302

  124. Morvan D (2015) Numerical study of the behaviour of a surface fire propagating through a firebreak built in a Mediterranean shrub layer. Fire Saf J 71:34–48. https://doi.org/10.1016/j.firesaf.2014.11.012

    Google Scholar 

  125. Pérez Y, Pastor E, Àgueda A, Planas E (2011) Effect of wind and slope when scaling the forest fires rate of spread of laboratory experiments. Fire Technol 47:475–489. https://doi.org/10.1007/s10694-010-0168-7

    Google Scholar 

  126. Porterie B, Morvan D, Loraud JC, Larini M (1999) Cross wind effects on fire propagation through heterogeneous media. In: Fire safety science-proceedings of the sixth international symposium. International Association for Fire Safety Science, University of Poitiers, France, pp 707–716

  127. Trelles J, Pagni PJ (1997) Fire-induced winds in the 20 October 1991 Oakland Hills Fire. In: Hasemi Y (ed) IRE safety science-proceedings of the fifth international symposium. International Association for Fire Safety Science, Melbourne, Australia, pp 911–922

  128. Forthofer JM, Butler BW, Wagenbrenner NS (2014) A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part I. Model formulation and comparison against measurements. Int J Wildl Fire 23:969–981. https://doi.org/10.1071/WF12089

    Google Scholar 

  129. Forthofer JM, Butler BW, Mchugh CW, Finney MA, Bradshaw LS, Stratton RD, Shannon KS, Wagenbrenner NS (2014) A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part II. An exploratory study of the effect of simulated winds on fire growth simulations. Int J Wildl Fire 23:982–994. https://doi.org/10.1071/WF12090

    Google Scholar 

  130. Koo E, Linn RR, Pagni PJ, Edminster CB (2012) Modelling firebrand transport in wildfires using HIGRAD/FIRETEC. Int J Wildl Fire 21:396–417. https://doi.org/10.1071/WF09146

    Google Scholar 

  131. Maranghides A, McNamara D, Mell W, Trook J, Toman B (2013) A case study of a community affected by the Witch and Guejito fires: report #2—evaluating the effects of hazard mitigation actions on structure ignitions. Gaithersburg, MD

  132. Koo E, Pagni PJ, Linn RR (2007) Using FIRETEC to describe firebrand behavior in wildfires. In: The tenth international symposium of fire and materials. Interscience Communications, San Francisco

  133. Song J, Huang X, Liu N, Li H, Zhang L (2016) The wind effect on the transport and burning of firebrands. Fire Technol 53:1555–1568. https://doi.org/10.1007/s10694-017-0647-1

    Google Scholar 

  134. Tarifa CS, del Notario PP, Moreno FG (1965) On the flight paths and lifetimes of burning particles of wood. Symp Combust 10:1021–1037. https://doi.org/10.1016/S0082-0784(65)80244-2

    Google Scholar 

  135. Tarifa CS, del Notario PP, Moreno FG, Villa A (1967) Transport and combustion of firebrands, final report of grants FG-SP-11 and FG-SP-146. U.S. Department of Agriculture, Madrid, Spain

  136. Albini F (1981) Spot fire distance from isolated sources-extensions of a predictive model. In: Research Note INT-RN-309. USDA Forest Service, intermountain forest and range experiment station, Ogden, UT

  137. Albini F (1983) Transport of firebrands by line thermals. Combust Sci Technol 32:277–288. https://doi.org/10.1080/00102208308923662

    Google Scholar 

  138. Tohidi A, Kaye NB (2017) Aerodynamic characterization of rod-like debris with application to firebrand transport. J Wind Eng Ind Aerodyn 168:297–311. https://doi.org/10.1016/j.jweia.2017.06.019

    Google Scholar 

  139. Kim Y-D, Hayashi Y, Tri C YJ, Baek SJ (2009) A numerical study on travel distances of firebrands by wind. In: 7th Asia-Pacific conference on wind engineering, APCWE-VII, Taipei, Taiwan

  140. Tohidi A, Kaye NB (2017) Comprehensive wind tunnel experiments of lofting and downwind transport of non-combusting rod-like model firebrands during firebrand shower scenarios. Fire Saf J 90:95–111. https://doi.org/10.1016/j.firesaf.2017.04.032

    Google Scholar 

  141. Koo E, Pagni PJ, Weise DR, Woycheese JP (2010) Firebrands and spotting ignition in large-scale fires. Int J Wildl Fire 19:818. https://doi.org/10.1071/WF07119

    Google Scholar 

  142. Church CR, Snow JT, Dessens J (1980) Intense atmospheric vortices associated with a 1000 MW fire. Bull Am Meteorol Soc 61:682–694. https://doi.org/10.1175/1520-0477(1980)061%3C0682:IAVAWA%3E2.0.CO;2

    Google Scholar 

  143. Rodden RM, John FI, Laurino R (1965) Exploratory analysis of fire storms. In: Report prepared for the Office of Civil Defense, Contract N228-(62479)65419. Stanford Research Institute

  144. Carrier GF, Fendell FE, Feldman PS (1985) Firestorms. J. Heat Transf 107:19. https://doi.org/10.1115/1.3247379

    Google Scholar 

  145. Morton BR (1970) The physics of fire whirls. Fire Res Abstr Rev 12:1–19

    Google Scholar 

  146. Countryman CM (1971) Fire whirls…why, when, and where. USDA For. Serv.

  147. Soma S, Saito K (1991) Reconstruction of fire whirls using scale models. Combust Flame 86:269–284. https://doi.org/10.1016/0010-2180(91)90107-M

    Google Scholar 

  148. Zhou K, Liu N, Yuan X (2016) Effect of wind on fire whirl over a line fire. Fire Technol 52:865–875. https://doi.org/10.1007/s10694-015-0507-9

    Google Scholar 

  149. Moon K, Duff TJ, Tolhurst KG (2014) Sub-canopy forest winds: Understanding wind profiles for fire behaviour simulation. Fire Saf J (in press). https://doi.org/10.1016/j.firesaf.2016.02.005

  150. Rios O, Jahn W, Rein G (2014) Forecasting wind-driven wildfires using an inverse modelling approach. Nat Hazards Earth Syst Sci 14:1491–1503. https://doi.org/10.5194/nhess-14-1491-2014

    Google Scholar 

  151. Lautenberger C (2013) Wildland fire modeling with an Eulerian level set method and automated calibration. Fire Saf J 62:289–298. https://doi.org/10.1016/j.firesaf.2013.08.014

    Google Scholar 

  152. Coen JL, Schroeder W (2013) Use of spatially refined satellite remote sensing fire detection data to initialize and evaluate coupled weather-wildfire growth model simulations. Geophys Res Lett 40:5536–5541. https://doi.org/10.1002/2013GL057868

    Google Scholar 

  153. Finney M (2004) FARSITE: fire area simulator-model development and evaluation. Odgen, Utah

    Google Scholar 

  154. Tolhurst K, Shields B, Chong D (2008) Phoenix: development and application of a bushfire risk management tool. Aust J Emerg Manag 23:47–54

    Google Scholar 

  155. Prieto Herráez D, Asensio Sevilla MI, Ferragut Canals L, Cascón Barbero JM, Morillo Rodríguez A (2017) A GIS-based fire spread simulator integrating a simplified physical wildland fire model and a wind field model. Int J Geogr Inf Sci 31:2142–2163. https://doi.org/10.1080/13658816.2017.1334889

    Google Scholar 

  156. Wagenbrenner NS, Forthofer JM, Lamb BK, Shannon KS, Butler BW (2016) Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja. Atmos Chem Phys 16:5229–5241. https://doi.org/10.5194/acp-16-5229-2016

    Google Scholar 

  157. Pimont F, Dupuy JL, Linn RR, Parsons R, Martin-StPaul N (2017) Representativeness of wind measurements in fire experiments: lessons learned from large-eddy simulations in a homogeneous forest. Agric For Meteorol 232:479–488. https://doi.org/10.1016/j.agrformet.2016.10.002

    Google Scholar 

  158. Li XX, Liu CH, Leung DYC, Lam KM (2006) Recent progress in CFD modelling of wind field and pollutant transport in street canyons. Atmos Environ 40(29):5640–5658. https://doi.org/10.1016/j.atmosenv.2006.04.055

    Google Scholar 

  159. Xuan W (1999) Wind-induced dispersion of building exhaust in an urban environment: a full-scale and wind-tunnel study. Concordia University, Montreal

    Google Scholar 

  160. Lateb M, Meroney RN, Yataghene M, Fellouah H, Saleh F, Boufadel MC (2016) On the use of numerical modelling for near-field pollutant dispersion in urban environments—a review. Environ Pollut 208:271–283. https://doi.org/10.1016/j.envpol.2015.07.039

    Google Scholar 

  161. Meroney R, Ohba R, Leitl B, Kondo H, Grawe D, Tominaga Y (2016) Review of CFD guidelines for dispersion modeling. Fluids 1:14. https://doi.org/10.3390/fluids1020014

    Google Scholar 

  162. Blocken B, Vervoort R, van Hooff T (2016) Reduction of outdoor particulate matter concentrations by local removal in semi-enclosed parking garages: a preliminary case study for Eindhoven city center. J Wind Eng Ind Aerodyn 159:80–98. https://doi.org/10.1016/j.jweia.2016.10.008

    Google Scholar 

  163. Luo K, Yu HJ, Dai Z, Fang MM, Fan J (2016) CFD simulations of flow and dust dispersion in a realistic urban area. Eng Appl Comput Fluid Mech 10:229–243. https://doi.org/10.1080/19942060.2016.1150205

    Google Scholar 

  164. Evans DD, Mulholland GW, Gross D, Baum H, Saito K (1988) Burning, smoke production and smoke dispersion from oil spill combustion. In: Arctic and marine oilspill program (AMOP) technical seminar 11th Proceedings, June 7–9, 1988, Ontario, Canada

  165. LaBelle RP, Galt JA, Tennyson EJ, McGrattan K (1994) 1993 spill off tampa bay, a candidate for burning? In: Environment Canada. Arctic and marine oil spill program (AMOP) technical seminar, 17th proceedings. Volume 1, June 8–10, 1994, Vancouver, British Columbia, Environment Canada, Ottawa, Ontario, Vancouver, Canada, pp 635–649

  166. McGrattan KB, Baum HR, Rehm RG (1996) Numerical simulation of smoke plumes from large oil fires. Atmos Environ 30:4125–4136. https://doi.org/10.1016/1352-2310(96)00151-3

    Google Scholar 

  167. Trelles J, Mcgrattan K, Baum H (1999) Smoke transport by sheared winds. Combust Theory Model 3:323–341

    MATH  Google Scholar 

  168. Yamada T (1998) Smoke plume trajectory from in-situ burning of crude oil in Tomakomai. National Research Institute of Fire and Disaster, Japan

    Google Scholar 

  169. McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2017) Sixth edition fire dynamics simulator technical reference guide. Volume 1: mathematical model, pp 1–147. https://doi.org/10.6028/NIST.SP.1018-1

  170. Chang CH, Meroney RN (2003) Concentration and flow distributions in urban street canyons: wind tunnel and computational data. J Wind Eng Ind Aerodyn 91:1141–1154. https://doi.org/10.1016/S0167-6105(03)00056-4

    Google Scholar 

  171. Hu LH, Fong NK, Yang LZ, Chow WK, Li YZ, Huo R (2007) Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel: fire dynamics simulator comparisons with measured data. J Hazard Mater 140:293–298. https://doi.org/10.1016/j.jhazmat.2006.08.075

    Google Scholar 

  172. Mouilleau Y, Champassith A (2009) CFD simulations of atmospheric gas dispersion using the fire dynamics simulator (FDS). J Loss Prev Process Ind 22:316–323. https://doi.org/10.1016/j.jlp.2008.11.009

    Google Scholar 

  173. Moon K, Hwang J-M, Kim B-G, Lee C, Choi J (2014) Large-eddy simulation of turbulent flow and dispersion over a complex urban street canyon. Environ Fluid Mech 14:1381–1403. https://doi.org/10.1007/s10652-013-9331-2

    Google Scholar 

  174. Brzozowska L (2014) Modelling the propagation of smoke from a tanker fire in a built-up area. Sci Total Environ 472:901–911. https://doi.org/10.1016/j.scitotenv.2013.11.130

    Google Scholar 

  175. Nozu T, Tamura T (2012) LES of turbulent wind and gas dispersion in a city. J Wind Eng Ind Aerodyn 104–106:492–499. https://doi.org/10.1016/j.jweia.2012.02.024

    Google Scholar 

  176. Kashi E, Mirzaei F, Mirzaei F (2015) Analysis of gas dispersion and ventilation within a comprehensive CAD model of an offshore platform via computational fluid dynamics. J Loss Prev Process Ind 36:125–133. https://doi.org/10.1016/j.jlp.2015.05.019

    Google Scholar 

  177. Shiraishi Y, Kato S, Murakami S, Kim S, Ooka R (1999) Numerical analysis of thermal plume caused by large-scale fire in urban area. J Wind Eng Ind Aerodyn 81:261–271. https://doi.org/10.1016/S0167-6105(99)00022-7

    Google Scholar 

  178. Kandola BS, Marchant EW (1980) Wind induced movement of smoke within and around buildings—a wind tunnel investigation. In: Wind engineering, Elsevier, pp 1109–1125

  179. Breeze G (1996) Assessment of effluent concentrations from wind tunnel smoke studies using visual criteria. J Wind Eng Ind Aerodyn 60:189–194. https://doi.org/10.1016/0167-6105(96)00033-5

    Google Scholar 

  180. Lee B (2016) A method of smoke dispersion modeling of exhausted tunnel fire smoke in urban areas. In: Fire and evacuation modeling technical conference (FEMTC), Torremolinos, Spain

  181. Milford A, Coles A (2017) Considerations and risk contextfor smoke dispersion from emergency ventilation systems in urban settings. In: SFPE middle east conference, Dubai, UAE

  182. Hu LH, Huo R, Yang D (2009) Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow. J Hazard Mater 166:394–406. https://doi.org/10.1016/j.jhazmat.2008.11.105

    Google Scholar 

  183. Zhang X, Hu L, Tang F, Wang Q (2013) Large eddy simulation of fire smoke re-circulation in urban street canyons of different aspect ratios. Procedia Eng 62:1007–1014. https://doi.org/10.1016/j.proeng.2013.08.155

    Google Scholar 

  184. Pesic DJ, Blagojevic MDJ, Zivkovic NV (2014) Simulation of wind-driven dispersion of fire pollutants in a street canyon using FDS. Environ Sci Pollut Res 21:1270–1284. https://doi.org/10.1007/s11356-013-1999-9

    Google Scholar 

  185. Pesic DJ, Zigar DN, Anghel I, Glisovic SM (2016) Large Eddy simulation of wind flow impact on fire-induced indoor and outdoor air pollution in an idealized street canyon. J Wind Eng Ind Aerodyn 155:89–99. https://doi.org/10.1016/j.jweia.2016.05.005

    Google Scholar 

  186. Ai ZT, Mak CM (2017) CFD simulation of flow in a long street canyon under a perpendicular wind direction: evaluation of three computational settings. Build Environ 114:293–306. https://doi.org/10.1016/j.buildenv.2016.12.032

    Google Scholar 

  187. He L, Hang J, Wang X, Lin B, Li X, Lan G (2017) Numerical investigations of flow and passive pollutant exposure in high-rise deep street canyons with various street aspect ratios and viaduct settings. Sci Total Environ 584–585:189–206. https://doi.org/10.1016/j.scitotenv.2017.01.138

    Google Scholar 

  188. Lovreglio R, Ronchi E, Maragkos G, Beji T, Merci B (2016) An integrated dynamic approach for the impact of a toxic gas dispersion hazard: coupling human behaviour and dispersion modelling. J Hazard Mater 318:758–771. https://doi.org/10.1016/j.jhazmat.2016.06.015

    Google Scholar 

  189. Rakai A (2015) Environmental release simulations based on the Navier–Stokes equations. In: Fire Protection Workshop CERT

  190. Rakai A (2014) (Wind and) Smog in the city—towards operational modelling of flow and dispersion in urban areas with computational fluid dynamics (CFD). PhD Thesis, Budapest University of Technology and Economics

  191. Schatzmann M, Leitl B (2011) Issues with validation of urban flow and dispersion CFD models. J Wind Eng Ind Aerodyn 99:169–186https://doi.org/10.1016/j.jweia.2011.01.005

    Google Scholar 

  192. Al-Khalidy NH (2017) Utilising a combination of computational fluid dynamics and standard air quality simulation. Int J Mech 11:210–217

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Michael J. Gollner and Ali Tohidi (University of Maryland) for their support in the preparation of the wildfire section of the paper, as well as to anonymous reviewers who provided very valuable insight for the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Węgrzyński.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Węgrzyński, W., Lipecki, T. Wind and Fire Coupled Modelling—Part I: Literature Review. Fire Technol 54, 1405–1442 (2018). https://doi.org/10.1007/s10694-018-0748-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-018-0748-5

Keywords

Navigation