Skip to main content
Log in

Ways of developing chemical fibres based on cellulose: Viscose fibres and their prospects. Part 1. Development of viscose fibre technology. Alternative hydrated cellulose fibre technology

  • Published:
Fibre Chemistry Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Z. A. Rogovin, Principles of Chemical Fibre Chemistry and Technology [in Russian], 4th ed., Vol. 1, Khimiya, Moscow (1974).

    Google Scholar 

  2. A. T. Serkov, Viscose Fibres [in Russian], Khimiya, Moscow (1981).

    Google Scholar 

  3. Viscose Staple Fibres [in Russian], Khimiya, Moscow (1986).

  4. A. T. Serkov, V. V. Skorobogatykh, et al., Cotton-Like Viscose Fibres [in Russian], Khimiya, Moscow (1987).

    Google Scholar 

  5. K. Göetze, Chemiefasern nach dem Viskoseferfahren, Springer-Verlag, Berlin (1967).

    Google Scholar 

  6. C. Woodings (ed.), Regenerated Cellulose Fibers, Woodhead Publ., Cambridge (2000).

    Google Scholar 

  7. Chemiefasern/Textilindustrie, 40/92 (November, 1990); 141/93 (February).

    Google Scholar 

  8. International Rayon and Synthetic Fibres Committee, Brussels (2004); Web Site: http://www.cirfs.com

  9. World Directory of Manufactured Fibres Producers, Fiber Economics Bureau, Arlington (2006).

  10. G. Volgtlander, World Review of the Textile Industry and Nonwovens Industry, Oerlikon Textile (2006/2007).

  11. Chem. Fibers Intern., No. 1, 2 (2007).

  12. K. E. Perepelkin, Khim. Volokna, No. 3, 1–15 (2004).

  13. K. E. Perepelkin, in: Proceedings of the International Conference on the 110th Anniversary of the Birth of A. I. Meos and 60 Years of the Department of Chemical Fibre and Composite Material Technology [in Russian], Izd. SPGUTD, St. Petersburg (2007), pp. 72–88.

    Google Scholar 

  14. Ch. F. Cross, E. J. Bevan, and C. Beadle, British Patent No. 8700 (05.07.1892).

  15. K. E. Perepelkin, Khim. Volokna, No. 5, 3–11 (2002).

  16. K. E. Perepelkin, Khim. Volokna, No. 6, 6–14 (2002).

  17. K. E. Perepelkin, Vestn. Sankt-Peterburgsk. Gos. Un-ta. Tekhnol. Dizaina, No. 6, 3–9 (2003).

  18. K. E. Perepelkin, The Past, Present, and Future of Chemical Fibres [in Russian], MGTU, Moscow (2004).

    Google Scholar 

  19. K. E. Perepelkin, Khim. Volokna, No. 6, 5–18 (2005).

  20. K. E. Perepelkin, Vestn. Sankt-Peterburgsk. Gos. Un-ta. Tekhnol. Dizaina, No. 12, 85–100 (2006).

  21. S. P. Papkov, Physicochemical Principles of Processing Solutions of Polymers [in Russian], Khimiya, Moscow (1971).

    Google Scholar 

  22. S. P. Papkov and E. Z. Fainberg, Reaction of Cellulose and Cellulose Materials with Water [in Russian], Khimiya, Moscow (1976).

    Google Scholar 

  23. K. E. Perepelkin, Physicochemical Principles of Chemical Fibre Spinning Processes [in Russian], Khimiya, Moscow (1978).

    Google Scholar 

  24. M. M. Iovleva, Khim. Volokna, No. 4, 20–25 (2000).

  25. K. E. Perepelkin, Chem. Fibers Intern., 53, No. 3, 171–175 (2003).

    Google Scholar 

  26. L. Uneback, Chem. Fibers Intern., 46, No. 3, 189–190 (1996).

    Google Scholar 

  27. A. Cassel and C. A. Soderlund, Chem. Fibers Intern., 50, No. 5, 363–364 (2000).

    Google Scholar 

  28. AKZO NOBEL, Process Additives for the Viscose Industry, Stenungsund (2000).

  29. K. E. Perepelkin, Khim. Volokna, No. 2, 1–6; No. 3, 2–7 (1971).

  30. K. E. Perepelkin and V. S. Matveev, Gas Emulsions [in Russian], Khimiya, Leningrad (1979).

    Google Scholar 

  31. Ch. Reisinger, Lenzinger Ber, No. 78, 12–17 (1998).

  32. Lenzing-Technik GmbH, Equipment Prospectus, Lenzing (2004), http://www.lenzing-technic.com

  33. R. F. Diveen, Lenzinger Ber., No. 76, 33–37 (1997).

  34. V. S. Matveev, V. I. Yankov, et al., Production and Properties of Polymer Solutions and Melts [in Russian], Khimiya, Moscow (1994).

    Google Scholar 

  35. V. S. Matveev and O. V. Oprits, Filtration of Viscous Solutions of Polymers [in Russian], Khimiya, Moscow (1989).

    Google Scholar 

  36. V. M. Irklei, A. K. Stavtsov, et al., Khim. Volokna, No. 1, 54–55 (1991).

  37. A. K. Stavtsov, V. N. Drozdovskii, et al., Khim. Volokna, No. 5, 51–53 (1991).

  38. A. R. Stavtsov, Chem. Fibers Intern., 92–94 (April, 1996).

  39. Chem. Fibers Intern., 92–94 (June, 1996).

  40. Chem. Fibers Intern., 6–7 (September, 1996).

  41. S. Rajagopal, Lenzinger Ber., No. 76, 37–41 (1997).

  42. G. Kraft and N. Schelosky, Lenzingen Ber., No. 76, 65–70 (2000).

  43. V. P. Salovarova and Yu. P. Kozlov, Environmental-Biotechnological Principles of Conversion of Plant Substrates [in Russian], Izd. Un-ta Druzhby Narodov, Moscow (2001).

    Google Scholar 

  44. A. P. Sinitsyn, A. V. Gusakov, and V. M. Chernoglazov, Bioconversion of Lignocellulose Materials [in Russian], Izd. MGU, Moscow (1995).

    Google Scholar 

  45. A. V. Gusakov and A. P. Sinitsyn, Tekst. Khim., No. 2 (14), 58–72 (1998).

  46. H. Struszcyk and D. Ciehanska, Fibers Textiles East. Eur, 3(8), 49 (1996).

    Google Scholar 

  47. N. A. Kuptsan, T. P. Makarova, and A. I. Meos, Khim. Volokna, No. 5, 30–32 (1973).

  48. “Lenzing Technik: New SXS spinning technology,” Chem. Fibers Intern., 50, No. 1, 62 (2000).

  49. I. I. Matyushev and V. A. Gol'din, Khim. Volokna, No. 3, 5 (1989).

  50. W. Hartig, Chem. Fibers Intern., 45, No. 1, 35–39 (1995).

    Google Scholar 

  51. I. P. Baksheev, P. A. Butyagin, and I. I. Matyushev, Khim. Volokna, No. 4, 25–28 (1997).

  52. G. Ghiglione, Chem. Fibers Intern., 50, No. 6, 565–567 (2000).

    Google Scholar 

  53. L. Rodari, Chem. Fibers Intern., No. 1, 57–61 (2000).

  54. I. P. Baksheev, P. A. Butyagin, et al., Khim. Volokna, No. 2, 25–28 (2001).

  55. Kh. Z. Regel'man (ed.), Machines for Spinning Chemical and Mineral Fibres [in Russian], Mashinostroenie, Moscow (1972).

    Google Scholar 

  56. K. E. Perepelkin, Structure and Properties of Fibres [in Russian], Khimiya, Moscow (1985).

    Google Scholar 

  57. K. E. Perepelkin, Ros. Khim. Zh. (Zh. Ros. Khim. O-va im. D. I Mendeleeva), 46, No. 1, 31–48 (2002).

    Google Scholar 

  58. K. E. Perepelkin, Khim. Volokna, No. 2, 37–51 (2005).

  59. Z. A. Rogovin and L. S. Gal'braikh, Chemical Transformations and Modification of Cellulose [in Russian], 2nd ed., Khimiya, Moscow (1979).

    Google Scholar 

  60. M. A. Tyuganova, M. A. Kop'ev, and S. A. Kocharov, Zh. Vses. Khim. O-va. im. D. I. Mendeleeva, 26, No. 4, 421–428 (1981).

    CAS  Google Scholar 

  61. L. A. Vol'f, L. V. Emets, et al., in: Fibres with Special Properties [in Russian], L. A. Vol'f (ed.), Khimiya, Moscow (1980).

    Google Scholar 

  62. I. Ya. Kalontarov and V. L. Liverant, Giving Textile Materials Biocidal Properties and Resistance to Microorganisms [in Russian], Donish, Dushanbe (1981).

    Google Scholar 

  63. S. Rahbaran, Chem. Fibers Intern., 49, 491–493 (1999).

    Google Scholar 

  64. W. Albrecht, M. Reintjes, and B. Wulfhorst, Chem. Fibers Int., 47, No. 1, 298–304 (1997).

    Google Scholar 

  65. F. Meister, D. Vorbach, et al., Chem. Fibers Int., 48, No. 1, 32–35 (1998).

    Google Scholar 

  66. “Lyocell — Fibers (Collection of Papers),” Lenzinger Ber, No. 75 (1996), No. 76, 77 (1997), No. 78 (1998); No. 80 (2001).

  67. C. Michels and S. Kosan, Chem. Fiber Intern., 50, No. 6, 556–561 (2000).

    Google Scholar 

  68. K. E. Perepelkin, Khim. Volokna, No. 2, 58–64 (2007).

  69. Ch. Rohrer, P. Retzl, and H. Firgo, Chem. Fibers Int. Man-Made Fiber Year Book, 26–28 (2001).

  70. L. K. Golova, Ros. Khim. Zh., 46, No. 1, 49–57 (2002).

    Google Scholar 

  71. A. Sh. Goikhman, V. M. Irklei, et al., The Possibility of the Carbamate Method of Manufacture of Hydrated Cellulose Fibres and Films [in Russian], NIITEKhim, Moscow (1988).

    Google Scholar 

  72. H. Struszczyk and A. Urbanowski, Fibers Textiles East. Eur, 1, No. 1, 28–30 (1993).

    Google Scholar 

  73. A. Urbanowski, Chem. Fibers Intern., 46, No. 4, 200–202 (1996).

    Google Scholar 

  74. H. Struszcyk, Chem. Fibers Intern., 46, No. 4, 265–267 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Khimicheskie Volokna, No. 1, pp. 9–19, January–February, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perepelkin, K.E. Ways of developing chemical fibres based on cellulose: Viscose fibres and their prospects. Part 1. Development of viscose fibre technology. Alternative hydrated cellulose fibre technology. Fibre Chem 40, 10–23 (2008). https://doi.org/10.1007/s10692-008-9014-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10692-008-9014-9

Keywords

Navigation