Skip to main content

Advertisement

Log in

The first two confirmed sub-Saharan African families with germline TP53 mutations causing Li-Fraumeni syndrome

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Li-Fraumeni syndrome is a rare inherited cancer syndrome characterised by the early onset of specific cancers. Li-Fraumeni syndrome (LFS) is associated with germline mutations in the tumour suppressor gene, TP53. This study reports the first cases of molecularly confirmed LFS germline mutations in sub-Saharan Africa. Three black African patients, all with LFS-associated cancers, were seen through the Clinical and Counselling Section of the Division of Human Genetics at the National Health Laboratory Service and University of the Witwatersrand in Johannesburg, South Africa, during 2011–2012. All three patients (two were related) were recruited into this research study. Sequence analysis of the coding region of the TP53 gene identified a Class IV (likely pathogenic) variant, c.326T > C (p.Phe109Ser), in the two related patients, and a known pathogenic mutation, c.1010G > A (p.Arg337His), also referred to as the Brazilian founder mutation, in the other patient. A confirmed diagnosis in these patients will assist in tailored medical management (it is recommended that individuals carrying a germline TP53 mutation avoid radiotherapy as this might cause secondary radiotherapy-induced malignancies) and in addition, genetic testing of at-risk family members can be offered. Very little is known and documented on LFS in African individuals. Despite the small number of patients in this study, the results support the need for diagnostic genetic testing for LFS in South Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Cancer Society (2011) Cancer in Africa. American Cancer Society, Atlanta

    Google Scholar 

  2. Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS et al (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25(9):2097–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Oluwagbemiga LA, Oluwole A, Kayode AA (2012) Seventeen years after BRCA1: what is the BRCA mutation status of the breast cancer patients in Africa?: a systematic review. Springerplus 1(1):83. https://doi.org/10.1186/2193-1801-1-83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Francies FZ, Wainstein T, De Leeneer K, Cairns A, Murdoch M, Nietz S et al (2015) BRCA1, BRCA2 and PALB2 mutations and CHEK2 c.1100delC in different South African ethnic groups diagnosed with premenopausal and/or triple negative breast cancer. BMC Cancer 15:912. https://doi.org/10.1186/s12885-015-1913-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li FP, Fraumeni JF Jr (1969) Soft-tissue sarcomas, breast cancer, and other neoplasms: a familial syndrome? Ann Intern Med 71(4):747–752

    Article  CAS  PubMed  Google Scholar 

  6. Li FP, Fraumeni JF Jr, Mulvihill JJ, Blattner WA, Dreyfus MG, Tucker MA et al (1988) A cancer family syndrome in twenty-four kindreds. Cancer Res 48(18):5358–5362

    CAS  PubMed  Google Scholar 

  7. Birch JM, Alston RD, McNally RJ, Evans DG, Kelsey AM, Harris M et al (2001) Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene 20(34):4621–4628. https://doi.org/10.1038/sj.onc.1204621

    Article  CAS  PubMed  Google Scholar 

  8. Bougeard G, Renaux-Petel M, Flaman JM, Charbonnier C, Fermey P, Belotti M et al (2015) Revisiting Li-fraumeni syndrome from TP53 mutation carriers. J Clin Oncol 33(21):2345–2352. https://doi.org/10.1200/JCO.2014.59.5728

    Article  CAS  PubMed  Google Scholar 

  9. Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250(4985):1233–1238

    Article  CAS  PubMed  Google Scholar 

  10. Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM et al (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244(4901):217–221

    Article  CAS  PubMed  Google Scholar 

  11. Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP et al (2005) p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19(18):2122–2137. https://doi.org/10.1101/gad.1339905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bouaoun L, Sonkin D, Ardin M, Hollstein M, Byrnes G, Zavadil J et al (2016) TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Hum Mutat 37(9):865–876. https://doi.org/10.1002/humu.23035

    Article  CAS  PubMed  Google Scholar 

  13. Hung J, Mims B, Lozano G, Strong L, Harvey C, Chen TT et al (1999) TP53 mutation and haplotype analysis of two large African American families. Hum Mutat 14(3):216–221

    Article  CAS  PubMed  Google Scholar 

  14. Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2(1):a001008. https://doi.org/10.1101/cshperspect.a001008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pavletich NP, Chambers KA, Pabo CO (1993) The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes Dev 7(12B):2556–2564

    Article  CAS  PubMed  Google Scholar 

  16. Bougeard G, Sesboue R, Baert-Desurmont S, Vasseur S, Martin C, Tinat J et al (2008) Molecular basis of the Li-Fraumeni syndrome: an update from the French LFS families. J Med Genet 45(8):535–538. https://doi.org/10.1136/jmg.2008.057570

    Article  CAS  PubMed  Google Scholar 

  17. Amadou A, Waddington Achatz MI, Hainaut P (2018) Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: temporal phases of Li-Fraumeni syndrome. Curr Opin Oncol 30(1):23–29. https://doi.org/10.1097/CCO.0000000000000423

    Article  CAS  PubMed  Google Scholar 

  18. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stenson PD, Mort M, Ball EV, Howells K, Phillips AD, Thomas NS et al (2009) The human gene mutation database: 2008 update. Genome Med 1(1):13. https://doi.org/10.1186/gm13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285–291. https://doi.org/10.1038/nature19057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S et al (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 44(D1):D862-8. https://doi.org/10.1093/nar/gkv1222

    Article  CAS  PubMed  Google Scholar 

  24. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F (2010) Variant effect predictor. BMC Bioinformatics 26:2069–2070

    Article  CAS  Google Scholar 

  25. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249. https://doi.org/10.1038/nmeth0410-248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081. https://doi.org/10.1038/nprot.2009.86

    Article  CAS  PubMed  Google Scholar 

  27. The UniProt Consortium (2012) Reorganizing the protein space at the universal protein resource (UniProt). Nucleic Acids Res 40(Database issue):D71–D75. https://doi.org/10.1093/nar/gkr981

    Article  CAS  Google Scholar 

  28. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46(3):310–315. https://doi.org/10.1038/ng.2892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R et al (2003) Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100(14):8424–8429. https://doi.org/10.1073/pnas.1431692100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pinto EM, Ribeiro RC, Figueiredo BC, Zambetti GP (2011) TP53-associated pediatric malignancies. Genes Cancer 2(4):485–490. https://doi.org/10.1177/1947601911409745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ribeiro RC, Sandrini F, Figueiredo B, Zambetti GP, Michalkiewicz E, Lafferty AR et al (2001) An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc Natl Acad Sci USA 98(16):9330–9335. https://doi.org/10.1073/pnas.161479898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bougeard G, Limacher JM, Martin C, Charbonnier F, Killian A, Delattre O et al (2001) Detection of 11 germline inactivating TP53 mutations and absence of TP63 and HCHK2 mutations in 17 French families with Li-Fraumeni or Li-Fraumeni-like syndrome. J Med Genet 38(4):253–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Herrmann LJ, Heinze B, Fassnacht M, Willenberg HS, Quinkler M, Reisch N et al (2012) TP53 germline mutation in adult patients with adrenocortical carcinoma. J Clin Endocrinol Metab 97(3):E476-85

    Article  PubMed  Google Scholar 

  36. Figueiredo BC, Sandrini R, Zambetti GP, Pereira RM, Cheng C, Liu W et al (2006) Penetrance of adrenocortical tumours associated with the germline TP53 R337H mutation. J Med Genet 43(1):91–96. https://doi.org/10.1136/jmg.2004.030551

    Article  CAS  PubMed  Google Scholar 

  37. Cury NM, Ferraz VE, Silva WA (2014) Jr. TP53 p.R337H prevalence in a series of Brazilian hereditary breast cancer families. Hered Cancer Clin Pract 12(1):8. https://doi.org/10.1186/1897-4287-12-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Borges LM, Ayres FM (2015) R337H mutation of the TP53 gene as a clinical marker in cancer patients: a systematic review of literature. Genet Mol Res 14(4):17034–17043. https://doi.org/10.4238/2015.December.16.4

    Article  CAS  PubMed  Google Scholar 

  39. Curto JC, Soulodre-La France R (2005) Introduction: Interconnections between African and the Americas during the era of the slave trade. In: Curto JC, Soulodre-La France R (eds) Africa and the Americas: interconnections during the slave trade. Africa World Press, Trenton

    Google Scholar 

  40. Wasserman JD, Zambetti GP, Malkin D (2012) Towards an understanding of the role of p53 in adrenocortical carcinogenesis. Mol Cell Endocrinol 351(1):101–110. https://doi.org/10.1016/j.mce.2011.09.010

    Article  CAS  PubMed  Google Scholar 

  41. Gonzalez KD, Buzin CH, Noltner KA, Gu D, Li W, Malkin D et al (2009) High frequency of de novo mutations in Li-Fraumeni syndrome. J Med Genet 46(10):689–693. https://doi.org/10.1136/jmg.2008.058958

    Article  CAS  PubMed  Google Scholar 

  42. Gonzalez KD, Noltner KA, Buzin CH, Gu D, Wen-Fong CY, Nguyen VQ et al (2009) Beyond Li Fraumeni Syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol 27(8):1250–1256. https://doi.org/10.1200/JCO.2008.16.6959

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Faculty Research Committee (FRC) of the University of the Witwatersrand’s Faculty of Health Sciences for funding this study through an FRC Individual Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelley Macaulay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Appendix

Appendix

See Figs. 3 and 4.

Fig. 3
figure 3

Electropherogram of exon four in Patient A which illustrates the presence of the variant c.326T > C (as indicated by the arrow) which causes a missense codon change TTC-TCC. The sequence above the electropherogram refers to the reference sequence. This variant was also identified in Patient B

Fig. 4
figure 4

Electropherogram of exon ten in Patient C in whom the c.1010G > A mutation was identified (as indicated by the arrow). This mutation causes a missense codon change CGC–CAC. The sequence above the electropherogram refers to the reference sequence

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macaulay, S., Goodyear, Q.C., Kruger, M. et al. The first two confirmed sub-Saharan African families with germline TP53 mutations causing Li-Fraumeni syndrome. Familial Cancer 17, 607–613 (2018). https://doi.org/10.1007/s10689-018-0075-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-018-0075-5

Keywords

Navigation