Skip to main content
Log in

Commutativity of the centralizer of a subalgebra in a universal enveloping algebra

  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

Let G be a reductive algebraic group over an algebraically closed field of characteristic zero, and let \( \mathfrak{h} \) be an algebraic subalgebra of the tangent Lie algebra \( \mathfrak{g} \) of G. We find all subalgebras \( \mathfrak{h} \) that have no nontrivial characters and whose centralizers \( \mathfrak{U}(\mathfrak{g})^\mathfrak{h} \) and \( P(\mathfrak{g})^\mathfrak{h} \) in the universal enveloping algebra \( \mathfrak{U}(\mathfrak{g}) \) and in the associated graded algebra \( P(\mathfrak{g}) \), respectively, are commutative. For all these subalgebras, we prove that \( \mathfrak{U}(\mathfrak{g})^\mathfrak{h} = \mathfrak{U}(\mathfrak{h})^\mathfrak{h} \otimes \mathfrak{U}(\mathfrak{g})^\mathfrak{g} \) and \( P(\mathfrak{g})^\mathfrak{h} = P(\mathfrak{h})^\mathfrak{h} \otimes P(\mathfrak{g})^\mathfrak{g} \). Furthermore, we obtain a criterion for the commutativity of \( \mathfrak{U}(\mathfrak{g})^\mathfrak{h} \) in terms of representation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Knop, “Der Zentralisator einer Liealgebra in einer einhullenden Algebra,” J. Reine Angew. Math., 406 (1990), 5–9.

    MATH  MathSciNet  Google Scholar 

  2. J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, Paris, 1974.

    MATH  Google Scholar 

  3. È. B. Vinberg, “Commutative homogeneous spaces and co-isotropic symplectic actions,” Uspekhi Mat. Nauk, 56:1 (2001), 3–62; English transl.: Russian Math. Surveys, 56:1 (2001), 1–60.

    MathSciNet  Google Scholar 

  4. È. B. Vinberg and V. L. Popov, “Invariant theory,” in: Algebraic Geometry, 4, Itogi Nauki i Tekhniki. Current Problems in Mathematics. Fundamental Directions, vol. 55, VINITI, Moscow, 1989, 137–314.

    Google Scholar 

  5. D. I. Panyushev, “Inductive formulas for the index of seaweed Lie algebras,” Moscow Math. J., 1:2 (2001), 221–241.

    MATH  MathSciNet  Google Scholar 

  6. D. Luna, “Sur les orbites fermées des groupes algébriques reductifs,” Invent. Math., 16 (1972), 1–5.

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Tauvel and R. W. T. Yu, “Sur l’indice de certaines algèbres de Lie,” Ann. Inst. Fourier (Grenoble), 54:6 (2004), 1793–1810.

    MATH  MathSciNet  Google Scholar 

  8. A. G. Èlashvili, “The index of horospherical subalgebras of semisimple Lie algebras,” Trudy Tbilis. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR, 77 (1985), 116–126.

    MATH  Google Scholar 

  9. M. Rais, “L’indice des produits semi-directs E ×ρ \( \mathfrak{g} \),” C. R. Acad. Sci. Paris, Ser A, 287:4 (1978), 195–197.

    MATH  MathSciNet  Google Scholar 

  10. E. M. Andreev, È. B. Vinberg, and A. G. Èlashvili, “Orbits of highest dimension of semisimple linear Lie groups,” Funkts. Anal. Prilozhen., 1:4 (1967), 3–7; English transl.: Functional Anal. Appl., 1:4 (1967), 257–261.

    MATH  Google Scholar 

  11. J. E. Humphreys, Linear Algebraic Groups, Springer-Verlag, New York-Heidelberg, 1975.

    MATH  Google Scholar 

  12. D. Panyushev, “On the coadjoint representation of ℤ2-contractions of reductive algebras,” Adv. Math., 213:1 (2007), 380–404.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Panyushev, A. Premet, and O. Yakimova, “On symmetric invariants of centralisers in reductive Lie algebras,” J. Algebra, 313:1 (2007), 343–391.

    Article  MATH  MathSciNet  Google Scholar 

  14. B. Kostant, “Lie group representations on polynomial ring,” Amer. J. Math., 85 (1963), 327–404.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zorin.

Additional information

__________

Translated from Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 43, No. 2, pp. 47–63, 2009

Original Russian Text Copyright © by A. A. Zorin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zorin, A.A. Commutativity of the centralizer of a subalgebra in a universal enveloping algebra. Funct Anal Its Appl 43, 119–131 (2009). https://doi.org/10.1007/s10688-009-0016-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10688-009-0016-z

Key words

Navigation