Skip to main content
Log in

The discovery space of ELT-ANDES. Stars and stellar populations

  • Research
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The ArmazoNes high Dispersion Echelle Spectrograph (ANDES) is the optical and near-infrared high-resolution echelle spectrograph envisioned for the Extremely Large Telescope (ELT). We present a selection of science cases, supported by new calculations and simulations, where ANDES could enable major advances in the fields of stars and stellar populations. We focus on three key areas, including the physics of stellar atmospheres, structure, and evolution; stars of the Milky Way, Local Group, and beyond; and the star-planet connection. The key features of ANDES are its wide wavelength coverage at high spectral resolution and its access to the large collecting area of the ELT. These features position ANDES to address the most compelling questions and potentially transformative advances in stellar astrophysics of the decades ahead, including questions which cannot be anticipated today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Notes

  1. https://andes.inaf.it/instrument/exposure-time-calculator/

  2. The abundance ratio of elements X and Y relative to the Solar ratio is defined as [X/Y] \(\equiv \log _{10}\) \( (N_\textrm{X}/N_\textrm{Y})_{\star } - \log _{10} (N_\textrm{X}/N_\textrm{Y})_{\odot }\)

References

  1. Abbott, B.P., Abbott, R., Abbott, T.D., et al.: GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 119(16), 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101. arXiv:1710.05832 [gr-qc]

  2. Adibekyan, V.: Heavy Metal Rules. I. Exoplanet Incidence and Metallicity. Geosciences 9(3), 105 (2019). https://doi.org/10.3390/geosciences9030105. arXiv:1902.04493 [astro-ph.EP]

  3. Adibekyan, V.Z., Santos, N.C., Sousa, S.G., et al.: Overabundance of \(\alpha \)-elements in exoplanet-hosting stars. Astron. Astrophys. 543, A89 (2012). https://doi.org/10.1051/0004-6361/201219564. arXiv:1205.6670 [astro-ph.EP]

  4. Aguado, D.S., González Hernández, J.I., Allende Prieto, C., et al.: Back to the Lithium Plateau with the [Fe/H] \(< -6\) Star J0023+0307. Astrophys. J. Lett. 874(2), L21 (2019). https://doi.org/10.3847/2041-8213/ab1076. arXiv:1904.04892 [astro-ph.SR]

  5. Aguado, D.S., Belokurov, V., Myeong, G.C., et al.: Elevated r-process Enrichment in Gaia Sausage and Sequoia. Astrophys. J. Lett. 908(1), L8 (2021). https://doi.org/10.3847/2041-8213/abdbb8. arXiv:2012.01430 [astro-ph.GA]

  6. Aguado, D.S., Salvadori, S., Skúladóttir, Á., et al.: PISN-explorer: hunting the descendants of very massive first stars. Mon. Not. RAS 520(1), 866–878 (2023). https://doi.org/10.1093/mnras/stad164. arXiv:2301.03604 [astro-ph.GA]

  7. Airapetian, V.S., Barnes, R., Cohen, O., et al.: Impact of space weather on climate and habitability of terrestrial-type exoplanets. Int. J. Astrobiol. 19(2), 136–194 (2020). https://doi.org/10.1017/S1473550419000132. arXiv:1905.05093 [astro-ph.EP]

  8. Aizawa, M., Kawahara, H., Fan, S.: Global Mapping of an Exo-Earth Using Sparse Modeling. Astrophys. J. 896(1), 22 (2020). https://doi.org/10.3847/1538-4357/ab8d30. arXiv:2004.03941 [astro-ph.EP]

  9. Alvarado-Gómez J.D., Hussain G.A.J., Drake J.J., et al.: Far beyond the Sun - I. The beating magnetic heart in Horologium. Mon. Not. RAS 473(4), 4326–4338 (2018). https://doi.org/10.1093/mnras/stx2642. arXiv:1710.02438 [astro-ph.SR]

  10. Amazo-Gómez E.M., Alvarado-Gómez J.D., Poppenhäger K., et al.: Far beyond the Sun - II. Probing the stellar magnetism of the young Sun \(\i \) Horologii from the photosphere to its corona. Mon. Not. RAS 524(4), 5725–5748 (2023). https://doi.org/10.1093/mnras/stad2086, arXiv:2307.01744 [astro-ph.SR]

  11. Andretta, V., Busà, I., Gomez, M.T., et al.: The Ca II Infrared Triplet as a stellar activity diagnostic. I. Non-LTE photospheric profiles and definition of the R\(_{IRT}\) indicator. Astron. Astrophys. 430, 669–677 (2005). https://doi.org/10.1051/0004-6361:20041745

  12. Aoki, W., Barklem, P.S., Beers, T.C., et al.: Lithium Abundances of Extremely Metal-Poor Turnoff Stars. Astrophys. J. 698(2), 1803–1812 (2009). https://doi.org/10.1088/0004-637X/698/2/1803. arXiv:0904.1448 [astro-ph.SR]

  13. Applebaum, E., Brooks, A.M., Christensen, C.R., et al.: Ultrafaint Dwarfs in a Milky Way Context: Introducing the Mint Condition DC Justice League Simulations. Astrophys. J. 906(2), 96 (2021). https://doi.org/10.3847/1538-4357/abcafa. arXiv:2008.11207 [astro-ph.GA]

  14. Arcones, A., Thielemann, F.K.: Origin of the elements. Astron. Astrophys. Rev. 31(1), 1 (2023). https://doi.org/10.1007/s00159-022-00146-x

  15. Arentsen, A., Starkenburg, E., Martin, N.F., et al.: The Pristine Inner Galaxy Survey (PIGS) I: tracing the kinematics of metal-poor stars in the Galactic bulge. Mon. Not. RAS 491(1), L11–L16 (2020). https://doi.org/10.1093/mnrasl/slz156. arXiv:1910.06337 [astro-ph.GA]

  16. Asplund, M., Lambert, D.L., Nissen, P.E., et al.: Lithium Isotopic Abundances in Metal-poor Halo Stars. Astrophys. J. 644(1), 229–259 (2006). https://doi.org/10.1086/503538. https://arxiv.org/abs/astro-ph/0510636 [astro-ph]

  17. Baratella, M., D’Orazi, V., Carraro, G., et al.: The Gaia-ESO Survey: a new approach to chemically characterising young open clusters. I. Stellar parameters, and iron-peak, \({\alpha }\)-, and proton-capture elements. Astron. Astrophys. 634, A34 (2020). https://doi.org/10.1051/0004-6361/201937055. arXiv:2001.03179 [astro-ph.SR]

  18. Baratella, M., D’Orazi, V., Sheminova, V., et al.: The Gaia-ESO Survey: a new approach to chemically characterising young open clusters. II. Abundances of the neutron-capture elements Cu, Sr, Y, Zr, Ba, La, and Ce. Astron. Astrophys. 653, A67 (2021). https://doi.org/10.1051/0004-6361/202141069. arXiv:2107.12381 [astro-ph.SR]

  19. Barbuy, B., Chiappini, C., Gerhard, O.: Chemodynamical History of the Galactic Bulge. Annu. Rev. Astron. Astrophys. 56, 223–276 (2018). https://doi.org/10.1146/annurev-astro-081817-051826. arXiv:1805.01142 [astro-ph.GA]

  20. Bensby T., Yee, J.C., Feltzing, S., et al.: Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. V. Evidence for a wide age distribution and a complex MDF. Astron. Astrophys. 549, A147 (2013). https://doi.org/10.1051/0004-6361/201220678

  21. Bensby, T., Feltzing, S., Gould, A., et al.: Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. VI. Age and abundance structure of the stellar populations in the central sub-kpc of the Milky Way. Astron. Astrophys. 605, A89 (2017). https://doi.org/10.1051/0004-6361/201730560. arXiv:1702.02971

  22. Biazzo, K., D’Orazi, V., Desidera, S., et al.: The GAPS Programme at TNG. XXXV. Fundamental properties of transiting exoplanet host stars. Astron. Astrophys. 664, A161 (2022). https://doi.org/10.1051/0004-6361/202243467. arXiv:2205.15796 [astro-ph.SR]

  23. Bochanski, J.J., Savcheva, A., West, A.A., et al.: Mapping the Local Halo: Statistical Parallax Analysis of SDSS Low-mass Subdwarfs. Astron. J. 145(2), 40 (2013). https://doi.org/10.1088/0004-6256/145/2/40. arXiv:1211.6104 [astro-ph.SR]

  24. Bonifacio, P., Molaro, P.: The primordial lithium abundance. Mon. Not. RAS 285(4), 847–861 (1997). https://doi.org/10.1093/mnras/285.4.847. https://arxiv.org/abs/astro-ph/9611043 [astro-ph]

  25. Boro Saikia, S., Lüftinger, T., Folsom, C.P., et al.: Time evolution of magnetic activity cycles in young suns: The curious case of \(\kappa \) Ceti. Astron. Astrophys. 658, A16 (2022). https://doi.org/10.1051/0004-6361/202141525. arXiv:2110.06000 [astro-ph.SR]

  26. Bovill, M.S., Ricotti, M.: Pre-Reionization Fossils, Ultra-Faint Dwarfs, and the Missing Galactic Satellite Problem. Astrophys. J. 693(2), 1859–1870 (2009). https://doi.org/10.1088/0004-637X/693/2/1859. arXiv:0806.2340 [astro-ph]

  27. Bresolin, F., Kudritzki, R.P., Urbaneja, M.A.: The Metallicity and Distance of NGC 2403 from Blue Supergiants. Astrophys. J. 940(1), 32 (2022). https://doi.org/10.3847/1538-4357/ac9584. arXiv:2209.13135 [astro-ph.GA]

  28. Bromm, V., Yoshida, N.: The First Galaxies. Annu. Rev. Astron. Astrophys. 49(1), 373–407 (2011). https://doi.org/10.1146/annurev-astro-081710-102608. arXiv:1102.4638 [astro-ph.CO]

  29. Brown, D.J.A., Collier Cameron, A., Hall, C., et al.: Are falling planets spinning up their host stars? Mon. Not. RAS 415(1), 605–618 (2011). https://doi.org/10.1111/j.1365-2966.2011.18729.x. arXiv:1103.3599 [astro-ph.EP]

  30. Cantat-Gaudin, T., Anders, F., Castro-Ginard, A., et al.: Painting a portrait of the Galactic disc with its stellar clusters. Astron. Astrophys. 640, A1 (2020). https://doi.org/10.1051/0004-6361/202038192. arXiv:2004.07274 [astro-ph.GA]

  31. Chaplin, W.J., Serenelli, A.M., Miglio, A., et al.: Age dating of an early Milky Way merger via asteroseismology of the naked-eye star \(\nu \) Indi. Nat. Astron. 4, 382–389 (2020). https://doi.org/10.1038/s41550-019-0975-9. arXiv:2001.04653 [astro-ph.GA]

  32. Charbonnel, C., Primas, F.: The lithium content of the Galactic Halo stars. Astron. Astrophys. 442(3), 961–992 (2005). https://doi.org/10.1051/0004-6361:20042491. arXiv:astro-ph/0505247 [astro-ph]

  33. Chiavassa, A., Brogi, M.: Planet and star synergy at high-spectral resolution. A rationale for the characterization of exoplanet atmospheres. I. The infrared. Astron. Astrophys. 631, A100 (2019). https://doi.org/10.1051/0004-6361/201936566. arXiv:1909.11807 [astro-ph.EP]

  34. Chiavassa, A., Freytag, B., Masseron, T., et al.: Radiative hydrodynamics simulations of red supergiant stars. IV. Gray versus non-gray opacities. Astron. Astrophys. 535, A22 (2011). https://doi.org/10.1051/0004-6361/201117463. arXiv:1109.3619 [astro-ph.SR]

  35. Chiavassa, A., Caldas, A., Selsis, F., et al.: Measuring stellar granulation during planet transits. Astron. Astrophys. 597, A94 (2017). https://doi.org/10.1051/0004-6361/201528018. arXiv:1609.08966 [astro-ph.EP]

  36. Chiavassa, A., Kudritzki, R., Davies, B., et al.: Probing red supergiant dynamics through photo-center displacements measured by Gaia. Astron. Astrophys. 661, L1 (2022). https://doi.org/10.1051/0004-6361/202243568. arXiv:2205.05156 [astro-ph.SR]

  37. Chiti, A., Hansen, K.Y., Frebel, A.: Discovery of 18 Stars with \(-3.10 <\) [Fe/H] \(< -1.45\) in the Sagittarius Dwarf Galaxy. Astrophys. J. 901(2), 164 (2020). https://doi.org/10.3847/1538-4357/abb1ae. arXiv:2008.09901 [astro-ph.GA]

  38. Chojnowski, S.D., Hubrig, S., Hasselquist, S., et al.: Discovery of Resolved Magnetically Split Lines in SDSS/APOGEE Spectra of 157 Ap/Bp Stars. Astrophys. J. Lett. 873(1), L5 (2019). https://doi.org/10.3847/2041-8213/ab0750. arXiv:1903.01514 [astro-ph.SR]

  39. Clarkson, W., Sahu, K., Anderson, J., et al.: Stellar Proper Motions in the Galactic Bulge from Deep Hubble Space Telescope ACS WFC Photometry. Astrophys. J. 684, 1110–1142 (2008). https://doi.org/10.1086/590378. arXiv:0809.1682

  40. Coc, A., Uzan, J.P., Vangioni, E.: Standard Big-Bang Nucleosynthesis after Planck. (2013). https://doi.org/10.48550/arXiv.1307.6955. arXiv:1307.6955 [astro-ph.CO]

  41. Cohen, J.G., Meléndez, J.: Abundances in a Large Sample of Stars in M3 and M13. Astron. J. 129(1), 303–329 (2005). https://doi.org/10.1086/426369. arXiv:astro-ph/0409725 [astro-ph]

  42. Cowan, J.J., Sneden, C., Lawler, J.E., et al.: Origin of the heaviest elements: The rapid neutron-capture process. Rev. Modern Phys. 93(1), 015002 (2021). https://doi.org/10.1103/RevModPhys.93.015002. arXiv:1901.01410 [astro-ph.HE]

  43. Creevey, O., Grundahl, F., Thévenin, F., et al.: First detection of oscillations in the Halo giant HD 122563: Validation of seismic scaling relations and new parameters. Astron. Astrophys. 625, A33 (2019). https://doi.org/10.1051/0004-6361/201834721. arXiv:1902.02657 [astro-ph.SR]

  44. Creevey, O., Grundahl, F., Thévenin, F., et al.: First detection of oscillations in the Halo giant HD 122563: Validation of seismic scaling relations and new parameters. Astron. Astrophys. 625, A33 (2019). https://doi.org/10.1051/0004-6361/201834721. arXiv:1902.02657 [astro-ph.SR]

  45. Criscuoli, S., Marchenko, S., DeLand, M., et al.: Understanding Sun-as-a-Star Variability of Solar Balmer Lines. Astrophys. J. 951(2), 151 (2023). https://doi.org/10.3847/1538-4357/acd17d. arXiv:2305.05510 [astro-ph.SR]

  46. Cunha, K., Smith, V.V., Hasselquist, S., et al.: Adding the s-Process Element Cerium to the APOGEE Survey: Identification and Characterization of Ce II Lines in the H-band Spectral Window. Astrophys. J. 844(2), 145 (2017). https://doi.org/10.3847/1538-4357/aa7beb

    Article  ADS  Google Scholar 

  47. Danielski, C., Brucalassi, A., Benatti, S., et al.: The homogeneous characterisation of Ariel host stars. Experimental Astronomy 53(2), 473–510 (2022). https://doi.org/10.1007/s10686-021-09765-1. arXiv:2107.13014 [astro-ph.SR]

  48. Davies, B., Beasor, E.R.: The distances to star clusters hosting Red Supergiants: \(\chi \) Per, NGC 7419, and Westerlund 1. Mon. Not. RAS 486(1), L10–L14 (2019). https://doi.org/10.1093/mnrasl/slz050. arXiv:1903.12506 [astro-ph.SR]

  49. Davies, B., Kudritzki, R.P., Lardo, C., et al.: Red Supergiants as Cosmic Abundance Probes: Massive Star Clusters in M83 and the Mass-Metallicity Relation of Nearby Galaxies. Astrophys. J. 847(2), 112 (2017). https://doi.org/10.3847/1538-4357/aa89ed. arXiv:1708.08948 [astro-ph.GA]

  50. de Bennassuti, M., Salvadori, S., Schneider, R., et al.: Limits on Population III star formation with the most iron-poor stars. Mon. Not. RAS 465(1), 926–940 (2017). https://doi.org/10.1093/mnras/stw2687. arXiv:1610.05777 [astro-ph.GA]

  51. Delgado Mena, E., Tsantaki, M., Adibekyan, V.Z., et al.: Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. II. Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu. Astron. Astrophys. 606, A94 (2017). https://doi.org/10.1051/0004-6361/201730535. arXiv:1705.04349 [astro-ph.SR]

  52. Di Valentino, E., Mena, O., Pan, S., et al.: In the realm of the Hubble tension-a review of solutions. Class. Quantum Grav. 38(15), 153001 (2021). https://doi.org/10.1088/1361-6382/ac086d. arXiv:2103.01183 [astro-ph.CO]

  53. Donati, J.F., Landstreet, J.D.: Magnetic Fields of Nondegenerate Stars. Annu. Rev. Astron. Astrophys. 47(1), 333–370 (2009). https://doi.org/10.1146/annurev-astro-082708-101833. arXiv:0904.1938 [astro-ph.SR]

  54. Dong, C., Lingam, M., Ma, Y., et al.: Is Proxima Centauri b Habitable? A Study of Atmospheric Loss. Astrophys. J. Lett. 837(2), L26 (2017). https://doi.org/10.3847/2041-8213/aa6438. arXiv:1702.04089 [astro-ph.EP]

  55. Drake, J., Alvarado-Gómez, J.D., Airapetian, V., et al.: High-Energy Photon and Particle Effects on Exoplanet Atmospheres and Habitability. Bull. AAS 51(3):113 (2019). https://doi.org/10.48550/arXiv.1903.12338. arXiv:1903.12338 [astro-ph.HE]

  56. Drout, M.R., Piro, A.L., Shappee, B.J., et al.: Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis. Science 358(6370), 1570–1574 (2017). https://doi.org/10.1126/science.aaq0049. arXiv:1710.05443 [astro-ph.HE]

  57. Eichler, M., Sayar, W., Arcones, A., et al.: Probing the Production of Actinides under Different r-process Conditions. Astrophys. J. 879(1), 47 (2019). https://doi.org/10.3847/1538-4357/ab24cf. arXiv:1904.07013 [astro-ph.HE]

  58. El-Badry, K., Bland-Hawthorn, J., Wetzel, A., et al.: Where are the most ancient stars in the Milky Way? Mon. Not. RAS 480(1), 652–668 (2018). https://doi.org/10.1093/mnras/sty1864. arXiv:1804.00659 [astro-ph.GA]

  59. Evans, C.J.: Massive stars in the era of ELTs. Bull. Soc. R. Sci. Liege 80, 456–468 (2011). https://doi.org/10.48550/arXiv.1009.4483. arXiv:1009.4483 [astro-ph.IM]

  60. Evans, C.J., Davies, B., Kudritzki, R.P., et al.: Stellar metallicities beyond the Local Group: the potential of J-band spectroscopy with extremely large telescopes. Astron. Astrophys. 527, A50 (2011). https://doi.org/10.1051/0004-6361/201015986. arXiv:1012.2383 [astro-ph.IM]

  61. Fanelli, C., Origlia, L., Oliva, E., et al.: Stellar population astrophysics (SPA) with the TNG. Arcturus Lab. Astron. Astrophys. 645, A19 (2021). https://doi.org/10.1051/0004-6361/202039397. arXiv:2011.12321 [astro-ph.SR]

  62. Fanelli, C., Origlia, L., Mucciarelli, A., et al.: Lithium Detection in Red Supergiant Stars of the Perseus Complex. Astrophys. J. 931(1), 61 (2022). https://doi.org/10.3847/1538-4357/ac69e7. arXiv:2206.01218 [astro-ph.SR]

  63. Fanelli, C., Origlia, L., Oliva, E., et al.: Stellar population astrophysics (SPA) with the TNG. The chemical content of the red supergiant population in the Perseus complex. Astron. Astrophys. 660, A7 (2022). https://doi.org/10.1051/0004-6361/202142492. arXiv:2112.08402 [astro-ph.SR]

  64. François, P., Depagne, E., Hill, V., et al.: First stars. VIII. Enrichment of the neutron-capture elements in the early Galaxy. Astron. Astrophys. 476(2), 935–950 (2007). https://doi.org/10.1051/0004-6361:20077706. arXiv:0709.3454 [astro-ph]

  65. Frebel, A., Bromm, V.: Chemical Signatures of the First Galaxies: Criteria for One-shot Enrichment. Astrophys. J. 759(2), 115 (2012). https://doi.org/10.1088/0004-637X/759/2/115. arXiv:1010.1261 [astro-ph.GA]

  66. Frebel, A., Norris, J.E.: Near-Field Cosmology with Extremely Metal-Poor Stars. Annu. Rev. Astron. Astrophys. 53, 631–688 (2015). https://doi.org/10.1146/annurev-astro-082214-122423. arXiv:1501.06921 [astro-ph.SR]

  67. Gagnier, D., Rieutord, M., Charbonnel, C., et al.: Critical angular velocity and anisotropic mass loss of rotating stars with radiation-driven winds. Astron. Astrophys. 625, A88 (2019). https://doi.org/10.1051/0004-6361/201834599. arXiv:1904.05089 [astro-ph.SR]

  68. Gagnier, D., Rieutord, M., Charbonnel, C., et al.: Evolution of rotation in rapidly rotating early-type stars during the main sequence with 2D models. Astron. Astrophys. 625, A89 (2019). https://doi.org/10.1051/0004-6361/201832581. arXiv:1904.05219 [astro-ph.SR]

  69. Gallenne, A., Kervella, P., Mérand, A., et al.: Observational calibration of the projection factor of Cepheids. IV. Period-projection factor relation of Galactic and Magellanic Cloud Cepheids. Astron. Astrophys. 608, A18 (2017). https://doi.org/10.1051/0004-6361/201731589. arXiv:1708.09851 [astro-ph.SR]

  70. García, R.A., Ballot, J.: Asteroseismology of solar-type stars. Living Rev. Sol. Phys. 16(1), 4 (2019). https://doi.org/10.1007/s41116-019-0020-1. arXiv:1906.12262 [astro-ph.SR]

  71. Garcia-Sage, K., Glocer, A., Drake, J.J., et al.: On the Magnetic Protection of the Atmosphere of Proxima Centauri b. Astrophys. J. Lett. 844(1), L13 (2017). https://doi.org/10.3847/2041-8213/aa7eca

  72. Gavel, A., Gruyters, P., Heiter, U., et al.: Atomic diffusion and mixing in old stars. VII. Abundances of Mg, Ti, and Fe in M 30. Astron. Astrophys. 652, A75 (2021). https://doi.org/10.1051/0004-6361/202140770. arXiv:2110.12391 [astro-ph.SR]

  73. Gazak, J.Z., Kudritzki, R., Evans, C., et al.: Red Supergiants as Cosmic Abundance Probes: The Sculptor Galaxy NGC 300. Astrophys. J. 805(2), 182 (2015). https://doi.org/10.1088/0004-637X/805/2/182. arXiv:1505.00871 [astro-ph.GA]

  74. Gizis, J.E.: M-Subdwarfs: Spectroscopic Classification and the Metallicity Scale. Astron. J. 113, 806–822 (1997). https://doi.org/10.1086/118302. arXiv:astro-ph/9611222 [astro-ph]

  75. González Hernández, J.I., Bonifacio, P., Caffau, E., et al.: Lithium in the globular cluster NGC 6397. Evidence for dependence on evolutionary status. Astron. Astrophys. 505(2), L13–L16 (2009). https://doi.org/10.1051/0004-6361/200912713. arXiv:0909.0983 [astro-ph.GA]

  76. González Hernández, J.I., Israelian, G., Santos, N.C., et al.: Searching for the Signatures of Terrestrial Planets in Solar Analogs. Astrophys. J. 720(2), 1592–1602 (2010). https://doi.org/10.1088/0004-637X/720/2/1592. arXiv:1007.0580 [astro-ph.SR]

  77. González Hernández, J.I., Aguado, D.S., Allende Prieto, C., et al.: The Extreme CNO-enhanced Composition of the Primitive Iron-poor Dwarf Star J0815+4729. Astrophys. J. Lett. 889(1), L13 (2020). https://doi.org/10.3847/2041-8213/ab62ae. arXiv:2001.07257 [astro-ph.SR]

  78. Gratton, R.G., Bonifacio, P., Bragaglia, A., et al.: The O-Na and Mg-Al anticorrelations in turn-off and early subgiants in globular clusters. Astron. Astrophys. 369, 87–98 (2001). https://doi.org/10.1051/0004-6361:20010144. arXiv:astro-ph/0012457 [astro-ph]

  79. Gray, D.F.: Mass Motions in the Photosphere of Betelgeuse. Astron. J. 135(4), 1450–1458 (2008). https://doi.org/10.1088/0004-6256/135/4/1450

  80. Hall, J.C.: Stellar Chromospheric Activity. Living Rev. Sol. Phys. 5, 2 (2008). https://doi.org/10.12942/lrsp-2008-2

  81. Hansen, C.J., Primas, F., Hartman, H., et al.: Silver and palladium help unveil the nature of a second r-process. Astron. Astrophys. 545, A31 (2012). https://doi.org/10.1051/0004-6361/201118643. arXiv:1205.4744 [astro-ph.SR]

  82. Hartwick, F.D.A., Cowley, A.P., Mould, J.R.: Studies of late-type dwarfs. VI. Identification of population II main-sequence stars at MV = +14. Astrophys. J. 286, 269–275 (1984). https://doi.org/10.1086/162595

  83. Hartwig, T., Bromm, V., Klessen, R.S., et al.: Constraining the primordial initial mass function with stellar archaeology. Mon. Not. RAS 447(4), 3892–3908 (2015). https://doi.org/10.1093/mnras/stu2740. arXiv:1411.1238 [astro-ph.GA]

  84. Hatzes, A.P.: An investigation into the radial velocity variability of GJ 581: On the significance of GJ 581g. Astron. Nachr. 334, 616 (2013). https://doi.org/10.1002/asna.201311913. arXiv:1307.1246 [astro-ph.SR]

  85. Hatzes, A.P.: Periodic H\(\alpha \) variations in GL 581: Further evidence for an activity origin to GL 581d. Astron. Astrophys. 585, A144 (2016). https://doi.org/10.1051/0004-6361/201527135. arXiv:1512.00878 [astro-ph.SR]

  86. Hayes, C.R., Venn, K.A., Waller, F., et al.: GHOST Commissioning Science Results: Identifying a New Chemically Peculiar Star in Reticulum II. Astrophys. J. 955(1), 17 (2023). https://doi.org/10.3847/1538-4357/acebc0. arXiv:2306.04804 [astro-ph.GA]

  87. Heger, A., Woosley, S.E.: The Nucleosynthetic Signature of Population III. Astrophys. J. 567(1), 532–543 (2002). https://doi.org/10.1086/338487, arXiv:astro-ph/0107037 [astro-ph]

  88. Henkel, C., Mauersberger, R.: C and O nucleosynthesis in starbursts: the connection between distant mergers, the galaxy and the solar system. Astron. Astrophys. 274, 730–742 (1993)

    ADS  Google Scholar 

  89. Hinkel, N.R., Timmes, F.X., Young, P.A., et al.: Stellar Abundances in the Solar Neighborhood: The Hypatia Catalog. Astron. J. 148(3), 54 (2014). https://doi.org/10.1088/0004-6256/148/3/54. arXiv:1405.6719 [astro-ph.SR]

  90. Hirano, S., Hosokawa, T., Yoshida, N., et al.: One Hundred First Stars: Protostellar Evolution and the Final Masses. Astrophys. J. 781(2), 60 (2014). https://doi.org/10.1088/0004-637X/781/2/60. arXiv:1308.4456 [astro-ph.CO]

  91. Höfner, S., Olofsson, H.: Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements. Astron. Astrophys. Rev. 26(1), 1 (2018). https://doi.org/10.1007/s00159-017-0106-5

  92. Hojjatpanah, S., Oshagh, M., Figueira, P., et al.: The correlation between photometric variability and radial velocity jitter. Based on TESS and HARPS observations. Astron. Astrophys. 639, A35 (2020). https://doi.org/10.1051/0004-6361/202038035. arXiv:2005.10105 [astro-ph.EP]

  93. Holmbeck, E.M., Sprouse, T.M., Mumpower, M.R.: Nucleosynthesis and observation of the heaviest elements. Eur. Phys. J. A 59(2), 28 (2023). https://doi.org/10.1140/epja/s10050-023-00927-7. arXiv:2304.01850 [nucl-th]

  94. Hosford, A., Ryan, S.G., García Pérez, A.E., et al.: Lithium abundances of halo dwarfs based on excitation temperature. I. Local thermodynamic equilibrium. Astron. Astrophys. 493(2), 601–612 (2009). https://doi.org/10.1051/0004-6361:200810240. arXiv:0811.2506 [astro-ph]

  95. Howes, L.M., Casey, A.R., Asplund, M., et al.: Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way. Nature 527(7579), 484–487 (2015). https://doi.org/10.1038/nature15747. arXiv:1511.03930 [astro-ph.GA]

  96. Hubrig, S., Järvinen, S.P., Schöller. M., et al.: Early B-type Stars with Resolved Zeeman Split Lines. In: Werner, K., Stehle, C., Rauch, T., et al. (eds.) Radiative Signatures from the Cosmos, p 193 (2019). https://doi.org/10.48550/arXiv.1812.03462. arXiv:1812.03462

  97. Humphreys, R.M.: The brightest stars as extragalactic distance indicators. Astrophys. J. 269, 335–351 (1983). https://doi.org/10.1086/161047

  98. Hunt, E.L., Reffert, S.: Improving the open cluster census. II. An all-sky cluster catalogue with Gaia DR3. Astron. Astrophys. 673, A114 (2023). https://doi.org/10.1051/0004-6361/202346285. arXiv:2303.13424 [astro-ph.GA]

  99. Işık, E., van Saders, J.L., Reiners, A., et al.: Scaling and Evolution of Stellar Magnetic Activity. Space Sci. Rev. 219(8), 70 (2023). https://doi.org/10.1007/s11214-023-01016-3. arXiv:2310.09515 [astro-ph.SR]

  100. Ilic, N., Poppenhaeger, K., Hosseini, S.M.: Tidal star-planet interaction and its observed impact on stellar activity in planet-hosting wide binary systems. Mon. Not. RAS 513(3), 4380–4404 (2022). https://doi.org/10.1093/mnras/stac861. arXiv:2203.13637 [astro-ph.SR]

  101. Ishigaki, M.N., Tominaga, N., Kobayashi, C., et al.: The Initial Mass Function of the First Stars Inferred from Extremely Metal-poor Stars. Astrophys. J. 857(1), 46 (2018). https://doi.org/10.3847/1538-4357/aab3de. arXiv:1801.07763 [astro-ph.SR]

  102. Iwamoto, N., Umeda, H., Tominaga, N., et al.: The First Chemical Enrichment in the Universe and the Formation of Hyper Metal-Poor Stars. Science 309(5733), 451–453 (2005). https://doi.org/10.1126/science.1112997. arXiv:astro-ph/0505524 [astro-ph]

  103. Jeffery, C.S., Karakas, A.I., Saio, H.: Double white dwarf mergers and elemental surface abundances in extreme helium and R Coronae Borealis stars. Mon. Not. RAS 414(4), 3599–3616 (2011). https://doi.org/10.1111/j.1365-2966.2011.18667.x. arXiv:1103.1556 [astro-ph.SR]

  104. Jensen, J., Hayes, C.R., Sestito, F., et al.: Small-scale stellar haloes: detecting low surface brightness features in the outskirts of Milky Way dwarf satellites. (2023). https://doi.org/10.48550/arXiv.2308.07394. arXiv:2308.07394 [astro-ph.GA]

  105. Jeon, M., Bromm, V., Besla, G., et al.: The role of faint population III supernovae in forming CEMP stars in ultra-faint dwarf galaxies. Mon. Not. RAS 502(1), 1–14 (2021). https://doi.org/10.1093/mnras/staa4017. arXiv:2012.10012 [astro-ph.GA]

  106. Ji, A.P., Simon, J.D., Roederer, I.U., et al.: Metal Mixing in the r-process Enhanced Ultrafaint Dwarf Galaxy Reticulum II. Astron. J. 165(3), 100 (2023). https://doi.org/10.3847/1538-3881/acad84. arXiv:2207.03499 [astro-ph.GA]

  107. Kasen, D., Metzger, B., Barnes, J., et al.: Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551(7678), 80–84 (2017). https://doi.org/10.1038/nature24453. arXiv:1710.05463 [astro-ph.HE]

  108. Kashyap, V.L., Drake, J.J., Saar, S.H.: Extrasolar Giant Planets and X-Ray Activity. Astrophys. J. 687(2), 1339–1354 (2008). https://doi.org/10.1086/591922. arXiv:0807.1308 [astro-ph]

  109. Kervella, P., Nardetto, N., Bersier, D., et al.: Cepheid distances from infrared long-baseline interferometry. I. VINCI/VLTI observations of seven Galactic Cepheids. Astron. Astrophys. 416, 941–953 (2004). https://doi.org/10.1051/0004-6361:20031743, https://www.aanda.org/articles/aa/abs/2004/12/aa4132/aa4132.html

  110. Keszthelyi, Z., Meynet, G., Georgy, C., et al.: The effects of surface fossil magnetic fields on massive star evolution: I. Magnetic field evolution, mass-loss quenching, and magnetic braking. Mon. Not. RAS 485(4), 5843–5860 (2019). https://doi.org/10.1093/mnras/stz772. arXiv:1902.09333 [astro-ph.SR]

  111. Klessen, R.S., Glover, S.C.O.: The first stars: formation, properties, and impact. (2023). https://doi.org/10.48550/arXiv.2303.12500. arXiv:2303.12500 [astro-ph.CO]

  112. Kobayashi, C., Karakas, A.I., Lugaro, M.: The Origin of Elements from Carbon to Uranium. Astrophys. J. 900(2), 179 (2020). https://doi.org/10.3847/1538-4357/abae65. arXiv:2008.04660 [astro-ph.GA]

  113. Kochukhov, O., Lavail, A.: The Global and Small-scale Magnetic Fields of Fully Convective, Rapidly Spinning M Dwarf Pair GJ65 A and B. Astrophys. J. Lett. 835(1), L4 (2017). https://doi.org/10.3847/2041-8213/835/1/L4. arXiv:1702.02946 [astro-ph.SR]

  114. Kochukhov, O., Hackman, T., Lehtinen, J.J., et al.: Hidden magnetic fields of young suns. Astron. Astrophys. 635, A142 (2020). https://doi.org/10.1051/0004-6361/201937185. arXiv:2002.10469 [astro-ph.SR]

  115. Korn, A.J., Grundahl, F., Richard, O., et al.: A probable stellar solution to the cosmological lithium discrepancy. Nature 442(7103), 657–659 (2006). https://doi.org/10.1038/nature05011. arXiv:astro-ph/0608201 [astro-ph]

  116. Korn, A.J., Grundahl, F., Richard, O., et al.: Atomic Diffusion and Mixing in Old Stars. I. Very Large Telescope FLAMES-UVES Observations of Stars in NGC 6397. Astrophys. J. 671(1), 402–419 (2007). https://doi.org/10.1086/523098. arXiv:0709.0639 [astro-ph]

  117. Koutsouridou, I., Salvadori, S., Skúladóttir, Á., et al.: The energy distribution of the first supernovae. Mon. Not. RAS 525(1), 190–210 (2023). https://doi.org/10.1093/mnras/stad2304. arXiv:2309.00045 [astro-ph.GA]

  118. Koutsouridou, I., Salvadori, S., Skúladóttir, Á.: True Pair-instability Supernova Descendant: Implications for the First Stars’ Mass Distribution. Astrophys. J. Lett. 962(2), L26 (2024). https://doi.org/10.3847/2041-8213/ad2466

  119. Kurtz, D.W.: Asteroseismology Across the Hertzsprung-Russell Diagram. Annu. Rev. Astron. Astrophys. 60, 31–71 (2022). https://doi.org/10.1146/annurev-astro-052920-094232

  120. Kutra, T., Wu, Y., Qian, Y.: Super-Earths and Sub-Neptunes Are Insensitive to Stellar Metallicity. Astron. J. 162(2), 69 (2021). https://doi.org/10.3847/1538-3881/ac0431. arXiv:2003.08431 [astro-ph.EP]

  121. Langer, N.: Presupernova Evolution of Massive Single and Binary Stars. Annu. Rev. Astron. Astrophys. 50, 107–164 (2012). https://doi.org/10.1146/annurev-astro-081811-125534. arXiv:1206.5443 [astro-ph.SR]

  122. Laughlin, G., Bodenheimer, P., Adams, F.C.: The End of the Main Sequence. Astrophys. J. 482(1), 420–432 (1997). https://doi.org/10.1086/304125

  123. Lazzarotto, A., Hui-Bon-Hoa, A., Rieutord, M.: Photometric determination of rotation axis inclination, rotation rate, and mass of rapidly rotating intermediate-mass stars. (2023). https://doi.org/10.48550/arXiv.2307.00082. arXiv:2307.00082 [astro-ph.SR]

  124. Lépine, S., Rich, R.M., Shara, M.M.: Revised Metallicity Classes for Low-Mass Stars: Dwarfs (dM), Subdwarfs (sdM), Extreme Subdwarfs (esdM), and Ultrasubdwarfs (usdM). Astrophys. J. 669(2), 1235–1247 (2007). https://doi.org/10.1086/521614. arXiv:0707.2993 [astro-ph]

  125. Levesque, E.M.: Red Supergiants in the JWST Era. I. Near-IR Photometric Diagnostics. Astrophys. J. 867(2), 155 (2018). https://doi.org/10.3847/1538-4357/aae776. arXiv:1810.04187 [astro-ph.SR]

  126. Li, J., Jiang, J.H., Yang, H., et al.: Rotation Period Detection for Earth-like Exoplanets. Astron. J. 163(1), 27 (2022). https://doi.org/10.3847/1538-3881/ac36ce

    Article  ADS  Google Scholar 

  127. Lind, K., Primas, F., Charbonnel, C., et al.: Signatures of intrinsic Li depletion and Li-Na anti-correlation in the metal-poor globular cluster NGC 6397. Astron. Astrophys. 503(2), 545–557 (2009). https://doi.org/10.1051/0004-6361/200912524. arXiv:0906.2876 [astro-ph.SR]

  128. Maeder, A., Meynet, G.: Stellar evolution with rotation. VI. The Eddington and Omega -limits, the rotational mass loss for OB and LBV stars. Astron. Astrophys. 361, 159–166 (2000). https://doi.org/10.48550/arXiv.astro-ph/0006405. arXiv:astro-ph/0006405 [astro-ph]

  129. Magrini, L., Danielski, C., Bossini, D., et al.: Ariel stellar characterisation. I. Homogeneous stellar parameters of 187 FGK planet host stars: Description and validation of the method. Astron. Astrophys. 663, A161 (2022). https://doi.org/10.1051/0004-6361/202243405. arXiv:2204.08825 [astro-ph.SR]

  130. Magrini, L., Viscasillas Vázquez, C., Spina, L., et al.: The Gaia-ESO survey: Mapping the shape and evolution of the radial abundance gradients with open clusters. Astron. Astrophys. 669, A119 (2023). https://doi.org/10.1051/0004-6361/202244957. arXiv:2210.15525 [astro-ph.GA]

  131. Majewski, S.R., Schiavon, R.P., Frinchaboy, P.M., et al.: The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 154(3), 94 (2017). https://doi.org/10.3847/1538-3881/aa784d. arXiv:1509.05420 [astro-ph.IM]

  132. Maoz, D., Mannucci, F., Nelemans, G.: Observational Clues to the Progenitors of Type Ia Supernovae. Annu. Rev. Astron. Astrophys. 52, 107–170 (2014). https://doi.org/10.1146/annurev-astro-082812-141031. arXiv:1312.0628 [astro-ph.CO]

  133. Marchenko, S., Criscuoli, S., DeLand, M.T., et al.: Solar activity and responses observed in Balmer lines. Astron. Astrophys. 646, A81 (2021). https://doi.org/10.1051/0004-6361/202037767

  134. Marconi, A., Abreu, M., Adibekyan, V., et al.: ANDES, the high resolution spectrograph for the ELT: science case, baseline design and path to construction. In: Evans, C.J., Bryant, J.J., Motohara, K. (eds.) Ground-based and Airborne Instrumentation for Astronomy IX, p 1218424 (2022). https://doi.org/10.1117/12.2628689

  135. Martin, J., Fuhrmeister, B., Mittag, M., et al.: The Ca II infrared triplet’s performance as an activity indicator compared to Ca II H and K. Empirical relations to convert Ca II infrared triplet measurements to common activity indices. Astron. Astrophys. 605, A113 (2017). https://doi.org/10.1051/0004-6361/201630298

  136. Mathys, G.: Ap stars with resolved magnetically split lines: Magnetic field determinations from Stokes I and V spectra\({\star }\). Astron. Astrophys. 601, A14 (2017). https://doi.org/10.1051/0004-6361/201628429. arXiv:1612.03632 [astro-ph.SR]

  137. Matsunaga, N., Taniguchi, D., Jian, M., et al.: Identification of Absorption Lines of Heavy Metals in the Wavelength Range 0.97-1.32 \({\mu }\)m. Astrophys. J. Suppl. 246(1), 10 (2020). https://doi.org/10.3847/1538-4365/ab5c25. arXiv:1911.11277 [astro-ph.SR]

  138. Matsuno, T., Hirai, Y., Tarumi, Y., et al.: R-process enhancements of Gaia-Enceladus in GALAH DR3. Astron. Astrophys. 650, A110 (2021). https://doi.org/10.1051/0004-6361/202040227. arXiv:2101.07791 [astro-ph.GA]

  139. Mayor, M., Queloz, D.: A Jupiter-mass companion to a solar-type star. Nature 378(6555), 355–359 (1995). https://doi.org/10.1038/378355a0

    Article  ADS  Google Scholar 

  140. McConnachie, A.W.: The Observed Properties of Dwarf Galaxies in and around the Local Group. Astron. J. 144(1), 4 (2012). https://doi.org/10.1088/0004-6256/144/1/4. arXiv:1204.1562 [astro-ph.CO]

  141. Meléndez, J., Asplund, M., Gustafsson, B., et al.: The Peculiar Solar Composition and Its Possible Relation to Planet Formation. Astrophys. J. Lett. 704(1), L66–L70 (2009). https://doi.org/10.1088/0004-637X/704/1/L66. arXiv:0909.2299 [astro-ph.SR]

  142. Meléndez, J., Casagrande, L., Ramírez, I., et al.: Observational evidence for a broken Li Spite plateau and mass-dependent Li depletion. Astron. Astrophys. 515, L3 (2010). https://doi.org/10.1051/0004-6361/200913047. arXiv:1005.2944 [astro-ph.SR]

  143. Michaud, G., Fontaine, G., Beaudet, G.: The lithium abundance - Constraints on stellar evolution. Astrophys. J. 282, 206–213 (1984). https://doi.org/10.1086/162193

    Article  ADS  Google Scholar 

  144. Miglio, A., Chiappini, C., Mackereth, J.T., et al.: Age dissection of the Milky Way discs: Red giants in the Kepler field. Astron. Astrophys. 645, A85 (2021). https://doi.org/10.1051/0004-6361/202038307. arXiv:2004.14806 [astro-ph.GA]

  145. Montalbán, J., Mackereth, J.T., Miglio, A., et al.: Chronologically dating the early assembly of the Milky Way. Nat. Astron. 5, 640–647 (2021). https://doi.org/10.1038/s41550-021-01347-7. arXiv:2006.01783 [astro-ph.GA]

  146. Mordasini, C., Alibert, Y., Benz, W., et al.: Extrasolar planet population synthesis . IV. Correlations with disk metallicity, mass, and lifetime. Astron. Astrophys. 541, A97 (2012). https://doi.org/10.1051/0004-6361/201117350. arXiv:1201.1036 [astro-ph.EP]

  147. Mucciarelli, A., Salaris, M., Lovisi, L., et al.: Lithium abundance in the globular cluster M4: from the turn-off to the red giant branch bump. Mon. Not. RAS 412(1), 81–94 (2011). https://doi.org/10.1111/j.1365-2966.2010.17884.x. arXiv:1010.3879 [astro-ph.SR]

  148. Mucciarelli, A., Salaris, M., Bonifacio, P.: Giants reveal what dwarfs conceal: Li abundance in lower red giant branch stars as diagnostic of the primordial Li. Mon. Not. RAS 419(3), 2195–2205 (2012). https://doi.org/10.1111/j.1365-2966.2011.19870.x. arXiv:1109.4589 [astro-ph.SR]

  149. Mucciarelli, A., Salaris, M., Bonifacio, P., et al.: The cosmological lithium problem outside the Galaxy: the Sagittarius globular cluster M54. Mon. Not. RAS 444(2), 1812–1820 (2014). https://doi.org/10.1093/mnras/stu1522. arXiv:1407.7596 [astro-ph.SR]

  150. Mucciarelli, A., Monaco, L., Bonifacio, P., et al.: Discovery of a thin lithium plateau among metal-poor red giant branch stars. Astron. Astrophys. 661, A153 (2022). https://doi.org/10.1051/0004-6361/202142889. arXiv:2203.10347 [astro-ph.SR]

  151. Mucciarelli, A., Minelli, A., Bellazzini, M., et al.: The chemical DNA of the Magellanic Clouds. I. The chemical composition of 206 Small Magellanic Cloud red giant stars. Astron. Astrophys. 671, A124 (2023). https://doi.org/10.1051/0004-6361/202245133. arXiv:2301.08758 [astro-ph.GA]

  152. Nardetto, N., Mourard, D., Kervella, P., et al.: High resolution spectroscopy for Cepheids distance determination. I. Line asymmetry. Astron. Astrophys. 453(1), 309–319 (2006). https://doi.org/10.1051/0004-6361:20054333. arXiv:0804.1321 [astro-ph]

    Article  ADS  Google Scholar 

  153. Nardetto, N., Poretti, E., Rainer, M., et al.: HARPS-N high spectral resolution observations of Cepheids I. The Baade-Wesselink projection factor of \(\delta \) Cep revisited. Astron. Astrophys. 597, A73 (2017). https://doi.org/10.1051/0004-6361/201629400. arXiv:1701.01589 [astro-ph.SR]

  154. Nardetto, N., Gieren, W., Storm, J., et al.: HARPS-N high spectral resolution observations of Cepheids. II. The impact of the surface-brightness color relation on the Baade-Wesselink projection factor of \(\eta \) Aql. Astron. Astrophys. 671(A14), A14 (2023). https://doi.org/10.1051/0004-6361/202245298. arxiv:2301.09468 [astro-ph.SR]

  155. Navarete, F., Damineli, A., Ramirez, A.E., et al.: Distance and age of the massive stellar cluster Westerlund 1. I. Parallax method using Gaia-EDR3. Mon. Not. RAS 516(1), 1289–1301 (2022). https://doi.org/10.1093/mnras/stac2374. arXiv:2204.09414 [astro-ph.SR]

  156. Nordlander, T., Korn, A.J., Richard, O., et al.: Atomic Diffusion and Mixing in Old Stars. III. Analysis of NGC 6397 Stars under New Constraints. Astrophys. J. 753(1), 48 (2012). https://doi.org/10.1088/0004-637X/753/1/48. arXiv:1204.5600 [astro-ph.SR]

  157. Norris, J.E., Yong, D., Bessell, M.S., et al.: The Most Metal-poor Stars. IV. The Two Populations with [Fe/H] \(<\) -3.0. Astrophys. J. 762, 28 (2013). https://doi.org/10.1088/0004-637X/762/1/28. arXiv:1211.3157

  158. Osborn, A., Bayliss, D.: Investigating the planet-metallicity correlation for hot Jupiters. Mon. Not. RAS 491(3), 4481–4487 (2020). https://doi.org/10.1093/mnras/stz3207. arXiv:1911.05830 [astro-ph.EP]

  159. Oshagh, M., Santos, N.C., Figueira, P., et al.: Understanding stellar activity-induced radial velocity jitter using simultaneous K2 photometry and HARPS RV measurements. Astron. Astrophys. 606, A107 (2017). https://doi.org/10.1051/0004-6361/201731139. arXiv:1707.01827 [astro-ph.EP]

  160. Pace, A.B., Erkal, D., Li, T.S.: Proper Motions, Orbits, and Tidal Influences of Milky Way Dwarf Spheroidal Galaxies. Astrophys. J. 940(2), 136 (2022). https://doi.org/10.3847/1538-4357/ac997b. arXiv:2205.05699 [astro-ph.GA]

  161. Pagnini, G., Salvadori, S., Rossi, M., et al.: On the dearth of C-enhanced metal-poor stars in the galactic bulge. Mon. Not. RAS 521(4), 5699–5711 (2023). https://doi.org/10.1093/mnras/stad912. arXiv:2303.14204 [astro-ph.GA]

  162. Papadopoulos, P.P., Zhang, Z.Y., Xilouris, E.M., et al.: Molecular Gas Heating Mechanisms, and Star Formation Feedback in Merger/Starbursts: NGC 6240 and Arp 193 as Case Studies. Astrophys. J. 788(2), 153 (2014). https://doi.org/10.1088/0004-637X/788/2/153. arXiv:1404.6090 [astro-ph.GA]

  163. Patrick, L.R., Evans, C.J., Davies, B., et al.: Physical properties of the first spectroscopically confirmed red supergiant stars in the Sculptor Group galaxy NGC 55. Mon. Not. RAS 468(1), 492–500 (2017). https://doi.org/10.1093/mnras/stx410. arXiv:1702.06966 [astro-ph.GA]

  164. Pérez-Torres, M., Gómez, J.F., Ortiz, J.L., et al.: Monitoring the radio emission of Proxima Centauri. Astron. Astrophys. 645, A77 (2021). https://doi.org/10.1051/0004-6361/202039052. arXiv:2012.02116 [astro-ph.SR]

  165. Petit, V., Owocki, S.P., Wade, G.A., et al.: A magnetic confinement versus rotation classification of massive-star magnetospheres. Mon. Not. RAS 429(1), 398–422 (2013). https://doi.org/10.1093/mnras/sts344. arXiv:1211.0282 [astro-ph.SR]

  166. Petit, V., Keszthelyi, Z., MacInnis, R., et al.: Magnetic massive stars as progenitors of ‘heavy’ stellar-mass black holes. Mon. Not. RAS 466(1), 1052–1060 (2017). https://doi.org/10.1093/mnras/stw3126. arXiv:1611.08964 [astro-ph.SR]

  167. Pillitteri, I., Wolk, S.J., Sciortino, S., et al.: No X-rays from WASP-18. Implications for its age, activity, and the influence of its massive hot Jupiter. Astron. Astrophys. 567, A128 (2014). https://doi.org/10.1051/0004-6361/201423579. arXiv:1406.2620 [astro-ph.SR]

  168. Pineda, J.S., Villadsen, J.: Coherent radio bursts from known M-dwarf planet-host YZ Ceti. Nat. Astron. 7, 569–578 (2023). https://doi.org/10.1038/s41550-023-01914-0. arXiv:2304.00031 [astro-ph.SR]

  169. Placco, V.M., Roederer, I.U., Lee, Y.S., et al.: SPLUS J210428.01-004934.2: An Ultra Metal-poor Star Identified from Narrowband Photometry. Astrophys. J. Lett. 912(2), L32 (2021). https://doi.org/10.3847/2041-8213/abf93d. arXiv:2105.04573 [astro-ph.SR]

  170. Pont, F.: Empirical evidence for tidal evolution in transiting planetary systems. Mon. Not. RAS 396(3), 1789–1796 (2009). https://doi.org/10.1111/j.1365-2966.2009.14868.x. arXiv:0812.1463 [astro-ph]

  171. Poppenhaeger, K., Wolk, S.J.: Indications for an influence of hot Jupiters on the rotation and activity of their host stars. Astron. Astrophys. 565, L1 (2014). https://doi.org/10.1051/0004-6361/201423454. arXiv:1404.1073 [astro-ph.SR]

  172. Queiroz, A.B.A., Chiappini, C., Perez-Villegas, A., et al.: The Milky Way bar and bulge revealed by APOGEE and Gaia EDR3. Astron. Astrophys. 656, A156 (2021). https://doi.org/10.1051/0004-6361/202039030. arXiv:2007.12915 [astro-ph.GA]

  173. Rackham, B.V., Quintana, E.V., Dotson, J.L., et al.: Multiwavelength Characterization of Exoplanets and their Host Stars with the Pandora SmallSat: Mission Status. In: Bulletin of the American Astronomical Society, p 102.407 (2022)

  174. Rackham, B.V., Espinoza, N., Berdyugina, S.V., et al.: The effect of stellar contamination on low-resolution transmission spectroscopy: needs identified by NASA’s Exoplanet Exploration Program Study Analysis Group 21. RAS Tech Instrum 2(1), 148–206 (2023). https://doi.org/10.1093/rasti/rzad009. arXiv:2201.09905 [astro-ph.IM]

  175. Reggiani, H., Schlaufman, K.C., Casey, A.R., et al.: The Most Metal-poor Stars in the Magellanic Clouds Are r-process Enhanced. Astron. J. 162(6), 229 (2021). https://doi.org/10.3847/1538-3881/ac1f9a. arXiv:2108.10880 [astro-ph.GA]

  176. Reichert, M., Hansen, C.J., Arcones, A.: Extreme r-process Enhanced Stars at High Metallicity in Fornax. Astrophys. J. 912(2), 157 (2021). https://doi.org/10.3847/1538-4357/abefd8. arXiv:2102.08399 [astro-ph.GA]

  177. Reiners, A., Schüssler, M., Passegger, V.M.: Generalized Investigation of the Rotation-Activity Relation: Favoring Rotation Period instead of Rossby Number. Astrophys. J. 794, 144 (2014). https://doi.org/10.1088/0004-637X/794/2/144. arXiv:1408.6175 [astro-ph.SR]

  178. Reiners, A., Shulyak, D., Käpylä, P.J., et al.: Magnetism, rotation, and nonthermal emission in cool stars. Average magnetic field measurements in 292 M dwarfs. Astron. Astrophys. 662, A41 (2022). https://doi.org/10.1051/0004-6361/202243251. arXiv:2204.00342 [astro-ph.SR]

  179. Renzini, A., Gennaro, M., Zoccali, M., et al.: The WFC3 Galactic Bulge Treasury Program: Relative Ages of Bulge Stars of High and Low Metallicity. Astrophys. J. 863, 16 (2018). https://doi.org/10.3847/1538-4357/aad09b. arXiv:1806.11556

  180. Riess, A.G., Breuval, L., Yuan, W., et al.: Cluster Cepheids with High Precision Gaia Parallaxes, Low Zero-point Uncertainties, and Hubble Space Telescope Photometry. Astrophys. J. 938(1), 36 (2022). https://doi.org/10.3847/1538-4357/ac8f24. arXiv:2208.01045 [astro-ph.CO]

  181. Ritter, C., Herwig, F., Jones, S., et al.: NuGrid stellar data set - II. Stellar yields from H to Bi for stellar models with M\(_{ZAMS}\) = 1-25 M\(_{{\odot }}\) and Z = 0.0001-0.02. Mon. Not. RAS 480(1), 538–571 (2018). https://doi.org/10.1093/mnras/sty1729. arXiv:1709.08677 [astro-ph.SR]

  182. Rodríguez-López, C.: The quest for pulsating M dwarf stars. Front. Astron. Space Sci. 6, 76 (2019). https://doi.org/10.3389/fspas.2019.00076

    Article  ADS  Google Scholar 

  183. Rodríguez-López, C., MacDonald, J., Moya, A.: Pulsations in M dwarf stars. Mon. Not. RAS 419(1), L44–L48 (2012). https://doi.org/10.1111/j.1745-3933.2011.01174.x10.5479/ADS/bib/1912LicOB.7.102C. arXiv:1108.1126 [astro-ph.SR]

  184. Rodríguez-López, C., MacDonald, J., Amado, P.J., et al.: The theoretical instability strip of M dwarf stars. Mon. Not. RAS 438(3), 2371–2379 (2014). https://doi.org/10.1093/mnras/stt2352. arXiv:1312.2743 [astro-ph.SR]

  185. Roederer, I., Buzasi, D., Ji, A.P., et al.: The First Stars and the Origin of the Elements. Bull. AAS 51(3), 163 (2019)

  186. Roederer, I.U., Lawler, J.E., Den Hartog, E.A., et al.: The R-process Alliance: A Nearly Complete R-process Abundance Template Derived from Ultraviolet Spectroscopy of the R-process-enhanced Metal-poor Star HD 222925. Astrophys. J. Suppl. 260(2), 27 (2022). https://doi.org/10.3847/1538-4365/ac5cbc. arXiv:2205.03426 [astro-ph.SR]

  187. Roederer, I.U., Vassh, N., Holmbeck, E.M., et al.: Element abundance patterns in stars indicate fission of nuclei heavier than uranium. Science 382(6675), 1177–1180 (2023). https://doi.org/10.1126/science.adf1341

    Article  ADS  Google Scholar 

  188. Romaniello, M., Primas, F., Mottini, M., et al.: The influence of chemical composition on the properties of Cepheid stars. I. Period-Luminosity relation vs. iron abundance. Astron. Astrophys. 429, L37–L40 (2005). https://doi.org/10.1051/0004-6361:200400110, arXiv:astro-ph/0411594 [astro-ph]

  189. Romaniello, M., Primas, F., Mottini, M., et al.: The influence of chemical composition on the properties of Cepheid stars. II. The iron content. Astron. Astrophys. 488(2), 731–747 (2008). https://doi.org/10.1051/0004-6361:20065661. arXiv:0807.1196 [astro-ph]

  190. Romano, D.: The evolution of CNO elements in galaxies. Astron. Astrophys. Rev. 30(1), 7 (2022). https://doi.org/10.1007/s00159-022-00144-z. arXiv:2210.04350 [astro-ph.GA]

  191. Romano, D., Matteucci, F., Zhang, Z.Y., et al.: The evolution of CNO isotopes: a new window on cosmic star formation history and the stellar IMF in the age of ALMA. Mon. Not. RAS 470(1), 401–415 (2017). https://doi.org/10.1093/mnras/stx1197. arXiv:1704.06701 [astro-ph.GA]

  192. Rossi, M., Salvadori, S., Skúladóttir, Á.: Ultra-faint dwarf galaxies: unveiling the minimum mass of the first stars. Mon. Not. RAS 503(4), 6026–6044 (2021). https://doi.org/10.1093/mnras/stab821. arXiv:2103.09834 [astro-ph.GA]

  193. Rossi, M., Salvadori, S., Skúladóttir, Á., et al.: Understanding the origin of CEMP - no stars through ultra-faint dwarfs. Mon. Not. RAS 522(1), L1–L5 (2023). https://doi.org/10.1093/mnrasl/slad029. arXiv:2302.10210 [astro-ph.GA]

  194. Salaris, M., Cassisi, S.: Chemical element transport in stellar evolution models. R. Soc. Open Sci. 4(8), 170192 (2017). https://doi.org/10.1098/rsos.170192. arXiv:1707.07454 [astro-ph.SR]

  195. Salvadori, S., Ferrara, A.: Ultra faint dwarfs: probing early cosmic star formation. Mon. Not. RAS 395(1), L6–L10 (2009). https://doi.org/10.1111/j.1745-3933.2009.00627.x. arXiv:0812.3151 [astro-ph]

  196. Salvadori, S., Ferrara, A., Schneider, R., et al.: Mining the Galactic halo for very metal-poor stars. Mon. Not. RAS 401(1), L5–L9 (2010). https://doi.org/10.1111/j.1745-3933.2009.00772.x. arXiv:0908.4279 [astro-ph.CO]

  197. Salvadori, S., Skúladóttir, Á., Tolstoy, E.: Carbon-enhanced metal-poor stars in dwarf galaxies. Mon. Not. RAS 454(2), 1320–1331 (2015). https://doi.org/10.1093/mnras/stv1969. arXiv:1506.03451 [astro-ph.GA]

  198. Salvadori, S., Bonifacio, P., Caffau, E., et al.: Probing the existence of very massive first stars. Mon. Not. RAS 487(3), 4261–4284 (2019). https://doi.org/10.1093/mnras/stz1464. arXiv:1906.00994 [astro-ph.GA]

  199. Sandage, A.R., Eggen, O.J.: On the existence of subdwarfs in the (M Bol, log Te)-diagram. Mon. Not. RAS 119, 278 (1959). https://doi.org/10.1093/mnras/119.3.278

    Article  ADS  Google Scholar 

  200. Sanz-Forcada, J., Stelzer, B., Coffaro, M., et al.: Multi-wavelength variability of the young solar analog \(\i \) Horologii. X-ray cycle, star spots, flares, and UV emission. Astron. Astrophys. 631, A45 (2019). https://doi.org/10.1051/0004-6361/201935703. arXiv:1909.01320 [astro-ph.SR]

  201. See, V., Jardine, M., Vidotto, A.A., et al.: The effects of stellar winds on the magnetospheres and potential habitability of exoplanets. Astron. Astrophys. 570, A99 (2014). https://doi.org/10.1051/0004-6361/201424323. arXiv:1409.1237 [astro-ph.SR]

  202. Shkolnik, E., Walker, G.A.H., Bohlender, D.A., et al.: Hot Jupiters and Hot Spots: The Short- and Long-Term Chromospheric Activity on Stars with Giant Planets. Astrophys. J. 622(2), 1075–1090 (2005). https://doi.org/10.1086/428037. arXiv:astro-ph/0411655 [astro-ph]

  203. Shkolnik, E., Bohlender, D.A., Walker, G.A.H., et al.: The On/Off Nature of Star-Planet Interactions. Astrophys. J. 676(1), 628–638 (2008). https://doi.org/10.1086/527351. arXiv:0712.0004 [astro-ph]

  204. Shulyak, D., Reiners, A., Nagel, E., et al.: Magnetic fields in M dwarfs from the CARMENES survey. Astron. Astrophys. 626, A86 (2019). https://doi.org/10.1051/0004-6361/201935315. arXiv:1904.12762 [astro-ph.SR]

  205. Sim, S.A., Röpke, F.K., Hillebrandt, W., et al.: Detonations in Sub-Chandrasekhar-mass C+O White Dwarfs. Astrophys. J. Lett. 714, L52–L57 (2010). https://doi.org/10.1088/2041-8205/714/1/L52. arXiv:1003.2917 [astro-ph.HE]

  206. Simon, J.D.: The Faintest Dwarf Galaxies. Annu. Rev. Astron. Astrophys. 57, 375–415 (2019). https://doi.org/10.1146/annurev-astro-091918-104453. arXiv:1901.05465 [astro-ph.GA]

  207. Skúladóttir, Á., Hansen, C.J., Choplin, A., et al.: Neutron-capture elements in dwarf galaxies. II. Challenges for the s- and i-processes at low metallicity. Astron. Astrophys. 634, A84 (2020). https://doi.org/10.1051/0004-6361/201937075. arXiv:1912.06671 [astro-ph.GA]

  208. Skúladóttir, Á., Salvadori, S., Amarsi, A.M., et al.: Zero-metallicity Hypernova Uncovered by an Ultra-metal-poor Star in the Sculptor Dwarf Spheroidal Galaxy. Astrophys. J. Lett. 915(2), L30 (2021). https://doi.org/10.3847/2041-8213/ac0dc2. arXiv:2106.11592 [astro-ph.GA]

  209. Smith, V.V., Bizyaev, D., Cunha, K., et al.: The APOGEE Data Release 16 Spectral Line List. Astron. J. 161(6), 254 (2021). https://doi.org/10.3847/1538-3881/abefdc. arXiv:2103.10112 [astro-ph.SR]

  210. Snellen, I.A.G., Brandl, B.R., de Kok, R.J., et al.: Fast spin of the young extrasolar planet \({\beta }\) Pictoris b. Nature 509(7498), 63–65 (2014). https://doi.org/10.1038/nature13253

    Article  ADS  Google Scholar 

  211. Spina, L., Nordlander, T., Casey, A.R., et al.: How Magnetic Activity Alters What We Learn from Stellar Spectra. Astrophys. J. 895(1), 52 (2020). https://doi.org/10.3847/1538-4357/ab8bd7. arXiv:2004.09771 [astro-ph.SR]

  212. Spina, L., Sharma, P., Meléndez, J., et al.: Chemical evidence for planetary ingestion in a quarter of Sun-like stars. Nat. Astron. 5, 1163–1169 (2021). https://doi.org/10.1038/s41550-021-01451-8. arXiv:2108.12040 [astro-ph.SR]

  213. Spite, M., Spite, F.: Lithium abundance at the formation of the Galaxy. Nature 297(5866), 483–485 (1982). https://doi.org/10.1038/297483a0

    Article  ADS  Google Scholar 

  214. Starkenburg, E., Oman, K.A., Navarro, J.F., et al.: The oldest and most metal-poor stars in the APOSTLE Local Group simulations. Mon. Not. RAS 465(2), 2212–2224 (2017). https://doi.org/10.1093/mnras/stw2873. arXiv:1609.05214 [astro-ph.GA]

  215. Stokholm, A., Børsen-Koch, V.A., Stello, D., et al.: A Unified Exploration of the Chronology of the Galaxy. Mon. Not. RAS (2023). https://doi.org/10.1093/mnras/stad1912 . arXiv:2306.13132 [astro-ph.GA]

  216. Storm, J., Gieren, W., Fouqué, P., et al.: Calibrating the Cepheid period-luminosity relation from the infrared surface brightness technique. I. The p-factor, the Milky Way relations, and a universal K-band relation. Astron. Astrophys. 534, A94 (2011). https://doi.org/10.1051/0004-6361/201117155. arXiv:1109.2017 [astro-ph.CO]

  217. Storm, J., Gieren, W., Fouqué, P., et al.: Calibrating the Cepheid period-luminosity relation from the infrared surface brightness technique. II. The effect of metallicity and the distance to the LMC. Astron. Astrophys. 534, A95 (2011). https://doi.org/10.1051/0004-6361/201117154. arXiv:1109.2016 [astro-ph.CO]

  218. Strugarek, A., Brun, A.S., Matt, S.P., et al.: On the Diversity of Magnetic Interactions in Close-in Star-Planet Systems. Astrophys. J. 795(1), 86 (2014). https://doi.org/10.1088/0004-637X/795/1/86. arXiv:1409.5268 [astro-ph.EP]

  219. Susa, H., Hasegawa, K., Tominaga, N.: The Mass Spectrum of the First Stars. Astrophys. J. 792(1), 32 (2014). https://doi.org/10.1088/0004-637X/792/1/32. arXiv:1407.1374

  220. Takeda, Y.: On the rotational velocity of Sirius A. Mon. Not. RAS 499(1), 1126–1139 (2020). https://doi.org/10.1093/mnras/staa2869. arXiv:2009.07143 [astro-ph.SR]

  221. Takeda, Y.: Determination of Vega’s rotational velocity based on the Fourier analysis of spectral line profiles. Mon. Not. RAS 505(2), 1905–1916 (2021). https://doi.org/10.1093/mnras/stab1382. arXiv:2105.05109 [astro-ph.SR]

  222. Tinetti, G., Eccleston, P., Lueftinger, T., et al.: Ariel: Enabling planetary science across light-years. In: European Planetary Science Congress, pp EPSC2022–1114 (2022). https://doi.org/10.5194/epsc2022-1114

  223. Tisserand, P., Wood, P.R., Marquette, J.B., et al.: New Magellanic Cloud R Coronae Borealis and DY Persei type stars from the EROS-2 database: the connection between RCBs, DYPers, and ordinary carbon stars. Astron. Astrophys. 501, 985–998 (2009). https://doi.org/10.1051/0004-6361/200911808. arXiv:0905.3224

  224. Tisserand, P., Clayton, G.C., Bessell, M.S., et al.: A plethora of new R Coronae Borealis stars discovered from a dedicated spectroscopic follow-up survey. Astron. Astrophys. 635, A14 (2020). https://doi.org/10.1051/0004-6361/201834410. arXiv:1809.01743 [astro-ph.SR]

  225. Tisserand, P., Crawford, C.L., Clayton, G.C., et al.: The dawn of a new era for dustless HdC stars with Gaia eDR3. Astron. Astrophys. 667, A83 (2022). https://doi.org/10.1051/0004-6361/202142916. arXiv:2112.07693 [astro-ph.SR]

  226. Tisserand, P., Crawford, C.L., Soon, J., et al.: HdC and EHe stars through the prism of Gaia DR3: 3D distribution and Gaia’s chromatic PSF effects. (2023). arXiv:2309.10148 [astro-ph.SR]

  227. Trahin, B., Breuval, L., Kervella, P., et al.: Inspecting the Cepheid parallax of pulsation using Gaia EDR3 parallaxes. Projection factor and period-luminosity and period-radius relations. Astron. Astrophys. 656, A102 (2021). https://doi.org/10.1051/0004-6361/202141680. arXiv:2111.09125 [astro-ph.SR]

  228. Tumlinson, J.: Chemical Evolution in Hierarchical Models of Cosmic Structure. II. The Formation of the Milky Way Stellar Halo and the Distribution of the Oldest Stars. Astrophys. J. 708(2), 1398–1418 (2010). https://doi.org/10.1088/0004-637X/708/2/1398. arXiv:0911.1786 [astro-ph.GA]

  229. Vanni, I., Salvadori, S., Skúladóttir, Á., et al.: Characterizing the true descendants of the first stars. Mon. Not. RAS 526(2), 2620–2644 (2023). https://doi.org/10.1093/mnras/stad2910. arXiv:2309.07958 [astro-ph.GA]

  230. Vidotto, A.A.: The evolution of the solar wind. Living Rev. Sol. Phys. 18(1), 3 (2021). https://doi.org/10.1007/s41116-021-00029-w. arXiv:2103.15748 [astro-ph.SR]

  231. Viscasillas Vázquez, C., Magrini, L., Casali, G., et al.: The Gaia-ESO survey: Age-chemical-clock relations spatially resolved in the Galactic disc. Astron. Astrophys. 660, A135 (2022). https://doi.org/10.1051/0004-6361/202142937. arXiv:2202.04863 [astro-ph.GA]

  232. Watson, D., Hansen, C.J., Selsing, J., et al.: Identification of strontium in the merger of two neutron stars. Nature 574(7779), 497–500 (2019). https://doi.org/10.1038/s41586-019-1676-3. arXiv:1910.10510 [astro-ph.HE]

  233. Webbink, R.F.: Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. Astrophys. J. 277, 355–360 (1984). https://doi.org/10.1086/161701

    Article  ADS  Google Scholar 

  234. Wheeler, C., Oñorbe, J., Bullock, J.S., et al.: Sweating the small stuff: simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites. Mon. Not. RAS 453(2), 1305–1316 (2015). https://doi.org/10.1093/mnras/stv1691. arXiv:1504.02466 [astro-ph.GA]

  235. Wright, N.J., Drake, J.J., Mamajek, E.E., et al.: The Stellar-activity-Rotation Relationship and the Evolution of Stellar Dynamos. Astrophys. J. 743, 48 (2011). https://doi.org/10.1088/0004-637X/743/1/48. arXiv:1109.4634 [astro-ph.SR]

  236. Xing, Q.F., Zhao, G., Liu, Z.W., et al.: A metal-poor star with abundances from a pair-instability supernova. Nature 618(7966), 712–715 (2023). https://doi.org/10.1038/s41586-023-06028-1

    Article  ADS  Google Scholar 

  237. Yana Galarza, J., Meléndez, J., Lorenzo-Oliveira, D., et al.: The effect of stellar activity on the spectroscopic stellar parameters of the young solar twin HIP 36515. Mon. Not. RAS 490(1), L86–L90 (2019). https://doi.org/10.1093/mnrasl/slz153. arXiv:1910.01040 [astro-ph.SR]

  238. Zhang, S., Luo, A.L., Comte, G., et al.: M-subdwarf Research. I. Identification, Modified Classification System, and Sample Construction. Astrophys. J. Suppl. 240(2), 31 (2019). https://doi.org/10.3847/1538-4365/aafb32. arXiv:1812.11088 [astro-ph.SR]

  239. Zoccali, M., Renzini, A., Ortolani, S., et al.: Age and metallicity distribution of the Galactic bulge from extensive optical and near-IR stellar photometry. Astron. Astrophys. 399, 931–956 (2003)

Download references

Acknowledgements

IUR acknowledges support from United States National Science Foundation grants AST 1815403 and AST 2205847. CAP and JIGH are thankful to the Spanish Ministry of Science and Innovation (MICINN) for funding under the project PID2020-117493GB-I00. TB acknowledges support from project grant No. 2018- 04857 from the Swedish Research Council. E.M.A.G. acknowledges support from the German Leibniz-Gemeinschaft under project number P67/2018. RM acknowledges support from the Science and Technology Facilities Council (STFC), by the ERC Advanced Grant 695671 ‘QUENCH,’ and by the UKRI Frontier Research grant RISEandFALL. RM also acknowledges funding from a research professorship from the Royal Society. AC acknowledges support from the French National Research Agency (ANR) funded project PEPPER (ANR-20-CE31-0002). AJK acknowledges support by the Swedish National Space Agency (SNSA). VA is supported by FCT (Fundação para a Ciência e Tecnologia) through national funds by the following grants: UIDB/04434/2020, UIDP/04434/2020, and 2022.06962.PTDC. CRL and PJA acknowledge financial support from the Agencia Estatal de Investigación of the Ministerio de Ciencia e Innovación through projects PID2019-109522GB-C52, PID2022-137241NB-C43 and the Severo Ochoa grant CEX2021-001131-S all funded by MCIN/AEI/10.13039/501100011033. DR acknowledges support from the Italian National Institute for Astrophysics through Theory Grant 2022, Fu. Ob. 1.05.12.06.08. JRM acknowledges continuous support from the Universidade Federal do Rio Grande do Norte and Brazilian Agencies CNPq and CAPES.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization (Ideas; formulation or evolution of overarching research goals and aims.): IUR, AM, JDAG, AD, AC, GAW, LM, CRL, SL, SS, AJK, DR, CAP. Formal analysis (Application of statistical, mathematical, computational, or other formal techniques to analyse or synthesize study data.): DA. Project administration (Management and coordination responsibility for the research activity planning and execution.): PM. Software (Programming, software development; designing computer programs; implementation of the computer code and supporting algorithms; testing of existing code components.): AC. Supervision (Oversight and leadership responsibility for the research activity planning and execution, including mentorship external to the core team.): IUR, JDAG. Visualization (Preparation, creation and/or presentation of the published work, specifically visualization/data presentation.): IUR, AM, JDAG, AC, LM, DA, SS. Writing - original draft (Preparation, creation and/or presentation of the published work, specifically writing the initial draft (including substantive translation).): IUR, AM, JDAG, AD, AC, GAW, LM, SPJ, CRL, AJK, DR. Writing - review and editing (Preparation, creation and/or presentation of the published work by those from the original research group, specifically critical review, commentary or revision - including pre- or post-publication stages.): IUR, AM, JDAG, AC, GAW, LM, CRL, PJA, MBA, SL, SS, AJK, CP, DR, CAP, JIGH, AR.

Corresponding author

Correspondence to Ian U. Roederer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roederer, I.U., Alvarado-Gómez, J.D., Allende Prieto, C. et al. The discovery space of ELT-ANDES. Stars and stellar populations. Exp Astron 57, 17 (2024). https://doi.org/10.1007/s10686-024-09938-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10686-024-09938-8

Keywords

Navigation