Skip to main content

Advertisement

Log in

Land use affects flowering time: seasonal and genetic differentiation in the grassland plant Scabiosa columbaria

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Management practices like mowing or grazing have a large impact on grassland species. Due to its evolutionary significance, the interaction between the flowering time of plants and land use is of special interest. Asynchronous flowering restricts gene flow between populations and promotes, as a consequence, their differentiation. We selected 12 populations across southern central Europe to study the impact of mowing and grazing on seasonal and genetic differentiation in the grassland species Scabiosa columbaria. We conducted a common garden experiment to analyse floral display between populations and applied molecular markers to assess genetic diversity and genetic differentiation between populations. We demonstrated explicitly that flowering time and genetic differentiation are linked with the type of land use. Populations from mown habitats flowered significantly earlier than populations from grazed sites. Furthermore, genetic differentiation was stronger between populations from sites of different land use than between populations from far away geographic regions. The results of this study indicate that populations of S. columbaria are seasonally adapted to mowing and grazing. Land use is, therefore, an important factor for evolution in grassland species, which promotes the development of seasonal ecotypes and clearly affects intraspecific variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barrett SCH, Kohn JR (1991) Genetic and evolutionary consequences of small population size in plants. In: Falk DA, Holsinger KE (eds) Genetics, conservation of rare plants. Oxford University Press, Oxford, pp 3–30

    Google Scholar 

  • Billington HL, Mortimer AM, McNeilly T (1988) Divergence and genetic structure in adjacent grass populations. I. Quantitative genetics. Evolution 42:1267–1277. doi:10.2307/2409010

    Article  Google Scholar 

  • Bolliger M (1989) Odontites lanceolata (Gaudin) Reichenbach—ein formenreicher Endemit der Westalpen. Bot Jahrb Syst Pflanzengesch Pflanzengeogr 111:1–28

    Google Scholar 

  • Bonin A, Belleman E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetic studies. Mol Ecol 13:3261–3273. doi:10.1111/j.1365-294X.2004.02346.x

    Article  PubMed  CAS  Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691. doi:10.1126/science.1071617

    Article  PubMed  CAS  Google Scholar 

  • Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc Natl Acad Sci USA 104:1278–1282. doi:10.1073/pnas.0608379104

    Article  PubMed  CAS  Google Scholar 

  • Grime J, Hodgson J, Hunt R (1988) Comparative plant ecology: a functional approach to common British species. Unwin Hyman, London

    Google Scholar 

  • Grossmann F (1975) Morphologisch-ökologische Untersuchungen an Scabiosa columbaria L s.l. im mittleren und westlichen Alpengebiet. Veröff Geobot Inst Eidgenöss Tech Hochsch. Stift Rubel Zur 52:1–125

    Google Scholar 

  • Gustafsson S, Lönn M (2003) Genetic differentiation and habitat preference of flowering-time variants within Gymnadenia conopsea. Heredity 91:284–292. doi:10.1038/sj.hdy.6800334

    Article  PubMed  CAS  Google Scholar 

  • Hangelbroek HH, Ouborg NJ, Santamaría L, Schwenk K (2002) Clonal diversity and structure within a population of the pondweed Potamogeton pectinatus foraged by Bewick’s swans. Mol Ecol 11:2137–2150. doi:10.1046/j.1365-294X.2002.01598.x

    Article  PubMed  CAS  Google Scholar 

  • Hauser TP, Weidema IR (2000) Extreme variation in flowering time between populations of Silene nutans. Hereditas 132:95–101. doi:10.1111/j.1601-5223.2000.00095.x

    Article  Google Scholar 

  • Hegi G (1986) llustrierte Flora von Mitteleuropa. Pteridophyta—Spermatophyta. Blackwell, Berlin

    Google Scholar 

  • Janzen DH (1967) Synchronization of sexual reproduction of trees within the dry season in central America. Evolution 21:620–637. doi:10.2307/2406621

    Article  Google Scholar 

  • Järemo J, Ripa J, Nilsson P (1999) Flee or fight uncertainty: plant strategies in relation to anticipated damage. Ecol Lett 2:361–366. doi:10.1046/j.1461-0248.1999.00095.x

    Article  Google Scholar 

  • Joshi J, Schmid B, Caldeira MC, Dimitrakopoulos PG, Good JEG, Harris R, Hector A, Huss-Danell K, Jumpponen A, Minns A, Mulder CPH, Pereira JS, Prinz A, Scherer-Lorenzen M, Siamantziouras A-SD, Terry AC, Troumbis AY, Lawton JH (2001) Local adaptation enhances performance of common plant species. Ecol Lett 4:536–544. doi:10.1046/j.1461-0248.2001.00262.x

    Google Scholar 

  • Karlsson T (1984) Early-flowering taxa of Euphrasia (Scrophulariaceae) on Gotland, Sweden. Nord J Bot 4:303–326

    Google Scholar 

  • Kirkpatrick M (2000) Reinforcement and divergence under assortive mating. Proc R Soc Lond B Biol Sci 267:1649–1655. doi:10.1098/rspb.2000.1191

    Article  CAS  Google Scholar 

  • Kölliker R, Stadelmann FJ, Reidy B, Nösberger J (1998) Fertilization and defoliation frequency affect genetic diversity of Festuca pratensis Huds. in permanent grasslands. Mol Ecol 7:1557–1567. doi:10.1046/j.1365-294x.1998.00486.x

    Article  Google Scholar 

  • Krause J (1944) Studien über den Saisondimorphismus der Pflanzen. Beitr Biol Pflanzen 27:1–91

    Google Scholar 

  • Lennartsson T (1997) Seasonal differentiation—a conservative reproductive barrier in two grassland Gentianella (Gentianaceae) species. Plant Syst Evol 208:45–69. doi:10.1007/BF00986082

    Article  Google Scholar 

  • Malo JE (2002) Modelling unimodal flowering phenology with exponential sine equations. Funct Ecol 16:413–418. doi:10.1046/j.1365-2435.2002.00629.x

    Article  Google Scholar 

  • Mückschel C, Otte A (2003) Morphometric parameters: an approach for the indication of environmental conditions on calcareous grassland. Agric Ecosyst Environ 98:213–225. doi:10.1016/S0167-8809(03)00082-3

    Article  Google Scholar 

  • Ollerton J, Lack A (1998) Relationships between flowering phenology, plant size and reproductive success in Lotus corniculatus (Fabaceae). Plant Ecol 139:35–47. doi:10.1023/A:1009798320049

    Article  Google Scholar 

  • Ollerton J, Lack AJ (1992) Flowering phenology: an example of relaxation of natural selection? Trends Ecol Evol 7:274–276. doi:10.1016/0169-5347(92)90175-B

    Article  Google Scholar 

  • Ouborg NJ, van Treuren R, van Damme JMM (1991) The significance of genetic erosion in the process of extinction. II. Morphological variation and fitness components in populations of varying size of Salvia pratensis L. and Scabiosa columbaria L. Oecologia 86:359–367. doi:10.1007/BF00317601

    Article  Google Scholar 

  • Picó FX, Ouborg NJ, Groenendael J (2004) Evaluation of the extent of among-family variation in inbreeding depression in the perennial herb Scabiosa columbaria (Dipsacaceae). Am J Bot 91:1183–1189. doi:10.3732/ajb.91.8.1183

    Article  Google Scholar 

  • Pluess AR, Stöcklin J (2004a) Genetic diversity and fitness in Scabiosa columbaria in the Swiss Jura in relation to population size. Conserv Genet 5:145–156. doi:10.1023/B:COGE.0000029999.10808.c2

    Article  CAS  Google Scholar 

  • Pluess AR, Stöcklin J (2004b) Population genetic diversity of the clonal plant Geum reptans (Rosaceae) in the Swiss Alps. Am J Bot 91:2013–2021. doi:10.3732/ajb.91.12.2013

    Article  Google Scholar 

  • Poschlod P, Jackel A-K (1993) Untersuchungen zur Dynamik von generativen Diasporenbanken von Samenpflanzen in Kalkmagerrasen Jahreszeitliche Dynamik des Diasporenregens und der Diasporenbank auf zwei Kalkmagerrasenstandorten der Schwäbischen Alb. Flora 188:49–71

    Google Scholar 

  • Poschlod P, Wallis De Vries MF (2002) The historical and socioeconomic perspective of calcareous grasslands—lessons from the distant and recent past. Biol Conserv 104:361–376. doi:10.1016/S0006-3207(01)00201-4

    Article  Google Scholar 

  • Putterill J, Laurie R, Macknight R (2004) It’s time to flower: the genetic control of flowering time. Bioessays 26:363–373. doi:10.1002/bies.20021

    Article  PubMed  CAS  Google Scholar 

  • Reisch C, Poschlod P, Wingender R (2003) Genetic differentiation among populations of Sesleria albicans Kit. ex Schultes (Poaceae) from ecologically different habitats in central Europe. Heredity 91:519–527. doi:10.1038/sj.hdy.6800350

    Article  PubMed  CAS  Google Scholar 

  • Reisch C, Anke A, Röhl M (2005) Molecular variation within and between ten populations of Primula farinosa (Primulaceae) along an altitudinal gradient in the northern Alps. Basic Appl Ecol 6:35–45. doi:10.1016/j.baae.2004.09.004

    Article  CAS  Google Scholar 

  • Roux F, Touzet P, Cuguen J, Le Corre V (2006) How to be early flowering: an evolutionary perspective. Trends Plant Sci 11:375–381. doi:10.1016/j.tplants.2006.06.006

    Article  PubMed  CAS  Google Scholar 

  • Stinchcombe JR, Weinig C, Ungerer M, Olsen KM, Mays C, Halldorsdottir S et al (2004) A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering gene FRIGIDA. Proc Natl Acad Sci USA 101:4712–4717. doi:10.1073/pnas.0306401101

    Article  PubMed  CAS  Google Scholar 

  • Stöcklin J, Meier VG, Ryf M (1999) Populationsgrösse und Gefährdung von Magerwiesen-Pflanzen im Nordwestschweizer Jura. Bauhinia 13:61–68

    Google Scholar 

  • Theaker AJ, Briggs D (1993) Genecological studies of groundsel (Senecio vulgaris L.). IV. Rate of development in plants from different habitat types. New Phytol 123:185–194

    Google Scholar 

  • Turelli M, Barton NH, Coyne JA (2001) Theory and speciation. Trends Ecol Evol 16:330–343. doi:10.1016/S0169-5347(01)02177-2

    Article  PubMed  Google Scholar 

  • Turesson G (1922) The species and the variety as ecological units. Hereditas 3:100–113

    Article  Google Scholar 

  • van Tienderen PH, van der Toorn J (1991) Genetic differentiation between populations of Plantago lanceolata. I. Local adaption in three contrasting habitats. J Ecol 79:27–42. doi:10.2307/2260782

    Article  Google Scholar 

  • van Treuren R, Bijlsma R, van Delden W, Ouborg NJ (1991) The significance of genetic erosion in the process of extinction. I. Genetic differentiation in Salvia pratensis and Scabiosa columbaria in relation to population size. Heredity 66:181–189. doi:10.1038/hdy.1991.23

    Article  Google Scholar 

  • van Treuren R, Bijlsma R, Ouborg NJ, van Delden W (1993) The significance of genetic erosion in the process of extinction. IV. Inbreeding depression and heterosis effects caused by selfing and outcrossing in Scabiosa columbaria. Evolution 47:1669–1680. doi:10.2307/2410211

    Article  Google Scholar 

  • van Treuren R, Bijlsma R, Ouborg NJ, Kwak M (1994) Relationships between plant densitiy, outcrossing rates and seed set in natural and experimental populations of Scabiosa columbaria. J Evol Biol 7:287–302. doi:10.1046/j.1420-9101.1994.7030287.x

    Article  Google Scholar 

  • Waldmann P, Andersson S (1999) Multilocus and multitrait differentiation of populations of the locally rare plant Scabiosa canescens and the more common S. columbaria. Hereditas 130:341–343. doi:10.1111/j.1601-5223.1999.00341.x

    Article  Google Scholar 

  • Waldmann P, Andersson S (2000) Comparison of genetic (co)variance matrices within and between Scabiosa canescens and S. columbaria. J Evol Biol 13:826–835. doi:10.1046/j.1420-9101.2000.00214.x

    Article  CAS  Google Scholar 

  • Warwick SI, Briggs D (1979) The genecology of lawn weeds. III. Cultivation experiments with Achillea millefolium L., Bellis perennis L., Plantago lanceolata L., Plantago major L. and Prunella vulgaris L. collected from lawns and contrasting grassland habitats. New Phytol 83:509–536

    Google Scholar 

  • Weis AE (2005) Direct and indirect assortive mating: a multivariate approach to plant flowering schedules. J Evol Biol 18:536–546. doi:10.1111/j.1420-9101.2005.00891.x

    Article  PubMed  Google Scholar 

  • Wettstein RV (1895) Der Saison-Dimorphismus als Ausgangspunkt für die Bildung neuer Arten im Pflanzenreiche. Ber Dtsch Bot Ges 13:303–313

    Google Scholar 

  • Zopfi HJ (1993) Ecotypic variation in Rhinanthus alectorolophus (Scopoli) Pollich (Scrophulariaceae) in relation to grassland management. II. The genotypic basis of seasonal ecotypes. Flora 188:153–173

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Reisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reisch, C., Poschlod, P. Land use affects flowering time: seasonal and genetic differentiation in the grassland plant Scabiosa columbaria . Evol Ecol 23, 753–764 (2009). https://doi.org/10.1007/s10682-008-9270-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-008-9270-4

Keywords

Navigation