Skip to main content

Advertisement

Log in

Enhancing drought tolerance in pearl millet (Pennisetum glaucum L.): integrating traditional and omics approaches

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Globally pearl millet production is severely hampered by low moisture stress during crop season affecting economic yield drastically especially in the dry ecologies. Though conventional genetic interventions have delivered drought tolerant varieties/hybrids but achieved limited success in drought prone ecologies. Next-generation breeding techniques have revolutionized improvement of genetically complex traits like drought. An efficient strategy is to integrate conventional breeding methodologies with ‘OMICS’ techniques for fast track identification and transfer of genes improving drought tolerance in pearl millet at critical growth stages. Recently published draft genome sequence of pearl millet have made available a large wealth of genomic information and resources which could speed up breeding programmes for enhancing drought tolerance. The review highlights the multifarious effects of low moisture stress at different phases in pearl millet and mechanisms to cope with it. Progress made so far in tackling drought stress through conventional and next generation enabled breeding techniques has been discussed highlighting on an integrated OMICS approach to address drought stress effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • ¨dou A-A, et al. (11 co-authors). 2011. Gen

  • 1Anonymous (2019–20) Summary of Research Experiments. ICAR-All India Coordinated Research Project on Pearl millet, Jodhpur, Rajasthan

  • 2Anonymous. Exploreit.icrisat.org/profile/Pearl%20 Millet/178

  • Addisie Y, Gebre-E Y (2011) Response of pearl millet cultivars (Pennisetum glaucum) cultivars to post-flowering drought stress. Int J Plant Physiol Biochem 3:150–154

    Google Scholar 

  • Agarwal P, Parida SK, Mahto A, Das S, Mathew IE, Malik N, Tyagi AK (2014) Expanding frontiers in plant transcriptomics in aid of functional genomics and molecular breeding. Biotech J 9:1480–1492

    Article  CAS  Google Scholar 

  • Ali M, Patil BD, Sinha NC, Rawat CR (1986) Studies on some drought resistant traits of pearl millet cultivars and their association with grain production under natural drought. J Agron Crop Sci 156:133–137

    Article  Google Scholar 

  • Ali ZI, Golombek SD (2016) Effect of drought and nitrogen availability on osmotic adjustment of five pearl millet cultivars in the vegetative growth stage. J Agron Crop Sci 202:433–444

    Article  CAS  Google Scholar 

  • Anatala T, Gajera HP, Mandavia MK, Dave RA, Kothari VV, Golakiya BA (2015) Leaf proteome alterations in tolerant pearl millet [Pennisetum glaucum L.] genotype under water stress. Int J Agric Environ Biotechnol 8:539–549

    Article  Google Scholar 

  • Andrews DJ, Kumar A (1996) Use of the West African pearl millet landrace Iniadi in cultivar development. Plant Genet Res Newsletter 105:15–22

    Google Scholar 

  • Anuradha N, Satyavathi CT, Bharadwaj C, Nepolean T, Sankar SM, Singh SP, Meena MC, Singhal T, Srivastava RK (2017) Deciphering genomic regions for high grain iron and zinc content using association mapping in pearl millet. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00412

    Article  PubMed  PubMed Central  Google Scholar 

  • Aparna K, Nepolean T, Srivastava RK, Kholova J, Rajaram V, Kumar S, Rekha B, Senthilvel S, Hash CT, Vadez V (2015) Quantitative trait loci associated with constitutive traits control water use in pearl millet [Pennisetum glaucum (L). R.Br.]. Plant Biol 17:1073–1084

    Article  CAS  PubMed  Google Scholar 

  • Araus JL, Blum A, Nguyen HT, Parry MAJ, Tuberosa R (2007) Integrated approaches to sustain and improve plant production under drought stress: preface. J Exp Bot 58:2. https://doi.org/10.1093/jxb/er1276

    Article  Google Scholar 

  • Aravind J, Rinku S, Pooja B, Shikha M, Kaliyugam S, Mallikarjuna MG, Kumar A, Rao AR, Nepolean T (2017) Identification, characterization and functional validation of microRNAs in subtropical maize inbreds. Front Plant Sci 8: 941.https://doi.org/10.3389/fpls.2017.00941

  • Ashraf M, Ahmad A, McNeilly T (2001a) Growth and photosynthetic characteristics in pearl millet under water stress and different potassium supply. Photosynthetica 39:389–394

    Article  CAS  Google Scholar 

  • Ashraf M, Hafeez M (2004) Thermo tolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biol Plantarum 48:81–86

    Article  CAS  Google Scholar 

  • Ashraf M, Shabaz M, Mahmood S, Rasul E (2001b) Relationships between growth and photosynthetic characteristics in pearl millet (Pennisetum glaucum) under limited water deficit conditions with enhanced nitrogen supplies. Belg J Bot 134:131–144

    Google Scholar 

  • Basava RK, Hash CT, Mahendrakar MD, Kishor PBK, Satyavathi CT, Kumar S, Singh RB, Yadav RS, Gupta R, Srivastava RK (2019) Discerning combining ability loci for divergent environments using chromosome segment substitution lines (CSSLs) in pearl millet. PLoS ONE. https://doi.org/10.1371/journal.pone.0218916

    Article  PubMed  PubMed Central  Google Scholar 

  • basis of pearl millet adaptation along an environmental gradient

  • Beggi F, Falalou H, Buerkert A, Vadez V (2015) Tolerant pearl millet (Pennisetum glaucum (L.) R. Br.) varieties to low soil P have higher transpiration efficiency and lower flowering delay than sensitive ones. Plant Soil 389:89–108

    Article  CAS  Google Scholar 

  • Belhassen E (1997) Drought tolerance in higher plants: Genetical. Kluwer Academic Publishers Dordrecht, The Netherlands, Physiological and Molecular Biological Analysis

    Google Scholar 

  • Bello ZA, Walker S, Tesfuhuney W (2019) Water relations and productivity of two lines of pearl millet grown on lysimeter with two different soil types. Agric Water Manag 221:528–537

    Article  Google Scholar 

  • Bhandari A, Sandhu N, Bartholome J et al (2020) Genome-Wide association study for yield and yield related traits under reproductive stage drought in a diverse indica-aus rice panel. Rice. https://doi.org/10.1186/s12284-020-00406-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhat JA, Ali S, Salgotra RK, Mir ZA, Dutta S, Jadon V, Tyagi A, Mushtaq M, Jain N, Singh PK, Singh GP, Prabhu KV (2016) Genomic selection in the era of Next Generation Sequencing for complex traits in Plant Breeding. Front Genet. https://doi.org/10.3389/fgene.2016.00221

    Article  PubMed  PubMed Central  Google Scholar 

  • Bidinger FR (2002) Field screening for drought tolerance: Principles and Illustration. In NP Saxena, JC O'Toole (ed) Field Screening for Drought Tolerance in Crop Plants with Emphasis on Rice Proceedings of an International Workshop on Field Screening for Drought Tolerance in Rice, pp 109–124

  • Bidinger FR, Hash CT (2004) Pearl millet. In HT Nguyen and A Blum (ed) Physiology and Biotechnology Integration for Plant breeding. Marcel Dekker New York, pp 225–270

  • Bidinger FR, Mahalakshmi V, Rao GDP (1987a) Assessment of drought resistance in pearlmillet [Pennisetum americanum (L.) Leeke]. Factors affecting yield under stress. Aust J Agr Res 38:37–48

    Article  Google Scholar 

  • Bidinger FR, Mahalakshmi V, Rao GDP (1987b) Assessment of drought resistance in pearl millet (Pennisetum americanum (L.)Leeke). II. Estimation of genotype response to stress. Aust J Agr Res 38:49–59

    Article  Google Scholar 

  • Bidinger FR, Mahalakshmi V, Talukdar BS, Alagarswamy G (1982) Improvement in drought resistance in pearl millet. In: Drought Resistance in Crops with Emphasis on Rice, Los Banos, CA: IRRI, pp 357–376

  • Bidinger FR, Mahalakshmi V, Talukdar BS, Sharma RK (1995) Improvement of landrace cultivars of pearl millet for arid and semi-arid environments. Ann Arid Zone 34:105–110

    Google Scholar 

  • Bidinger FR, Nepolean T, Hash CT, Yadav RS, Howarth CJ (2007) Quantitative trait loci for grain yield in pearl millet under variable post flowering moisture conditions. Crop Sci 47:969–980

    Article  Google Scholar 

  • Bidinger FR, Serraj R, Rizvi SMH, Howarth C, Yadav RS, Hash CT (2005) Field evaluation of drought tolerance QTL effects on phenotype and adaptation in pearl millet (Pennisetum glaucum (L.) R. Br.] topcross hybrids. Field Crops Res 94:14–32

    Article  Google Scholar 

  • Bidinger FR, Yadav OP, Sharma MM (2002) Male-sterile seed parents for breeding landrace-based topcross hybrids of pearl millet (Pennisetum glaucum) for the arid zone. I. Productivity, responsiveness and stability. Indian J Genet Plant Breed 62:121–127

    Google Scholar 

  • Bidinger, F.R., Mahalakshmi, V., Rao, G.D.P., 1987a. Assessment of

  • Blum A (2013) The Interdrought conference in perspective. J Exp Bot 64:5773–5774

    Article  CAS  PubMed  Google Scholar 

  • Blum A, Tuberosa R (2018) Dehydration survival of crop plants and its measurement. J Exp Bot 69:975–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer JS, McLaughlin JE (2007) Functional reversion to identify controlling genes in multigenic responses: analysis of floral abortion. J Exp Bot 58:267–277

    Article  CAS  PubMed  Google Scholar 

  • Brunken JN (1977) A systematic study of Pennisetum sect Pennisetum (Gramineae). American J Bot 64:161–176

    Article  Google Scholar 

  • Budak H, Hussain B, Khan Z, Ozturk NZ, Ullah N (2015) From genetics to functional genomics: Improvement in drought signalling and tolerance in wheat. Front Plant Sci 6:1012. https://doi.org/10.3389/fpls.2015.01012

    Article  PubMed  PubMed Central  Google Scholar 

  • Burton GW, Kvein Kraig S, Maw Bryan W (1988) Effect of drought stress on productivity of trichomeless pearl millet. Crop Sci 2:809–811

    Article  Google Scholar 

  • Busso CS, Devos KM, Ross G, Mortimore M, Adams WM, Ambrose MJ, Alldrick S, Gale MD (2000) Genetic diversity within and among landraces of pearl millet (Pennisetum glaucum) under farmer management in West Africa. Genetic Res Crop Evol 47:561–568

    Article  Google Scholar 

  • Busso CS, Liu CJ, Hash CT, Witcombe JR, Devos KM, de Wet JMJ, Gale MD (1995) Analysis of recombination rate in female and male gametogenesis in pearl millet (Pennisetum glaucum) usng RFLP markers. Theor Appl Genet 90:242–246

    Article  CAS  PubMed  Google Scholar 

  • Carberrry PS, Cambell L, Bidinger FR (1985) The growth and development of pearl millet as affected by plant population. Field Crops Res 11:193–220

    Article  Google Scholar 

  • Ceccarelli S, Grando S, Hamblin J (1992) Relationship between barley grain yield measured in low and high yielding environments. Euphytica 64:49–58

    Article  Google Scholar 

  • Chaikam V, Molenaar W, Melchinger AE, Boddupalli PM (2019) Doubled haploid technology for line development in maize: technical advances and prospects. Theor Appl Genet 132:3227–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty A, Viswanath A, Malipatil R, Rathore A, Nepolean T (2020) Structural and functional characteristics of miRNAs in five strategic millet species and their utility in drought tolerance. Front Genet 11. https://doi.org/10.3389/fgene.2020.608421

  • Chanwala J, Satpati S, Dixit A, Parida A, Giri MK, Dey N (2020) Genome wide identification and expression analysis of WRKY transcription factors in pearl millet (Pennisetum glaucum) under dehydration and salinity stress. BMC Genomics 21:231. https://doi.org/10.1186/s12864-020-6622-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary HK, Badiyal A, Jamwal NS (2015) New frontiers in doubled haploidy breeding in wheat. Agri Res 52:1–12

    Google Scholar 

  • Chen L, Wang Q, Tang M, Zhang X, Pan Y, Yang X, Gao G, Lv R, Tao W, Jiang L, Liang T (2021) QTL mapping and identification of candidate genes for heat tolerance at the flowering stage in rice. Front Genet. https://doi.org/10.3389/fgene.2020.621871

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi BH, Park KY, Park RK (1997) Haploidy in pearl millet [Pennisetum glaucum (L.) R. Br.]. In SM Jain, Sopory SK, Veilleux RE (ed). In vitro Haploid Production in Higher Plants. Current Plant Science and Biotechnology in Agriculture, Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1862-2_9

  • Chopart JL (1980) Etude au champ des systèmes racinaires des principales cultures pluviales au Sénégal (arachide- mil-sorgho- riz pluvial). Thèse de docteur de I’INP de Toulouse

  • Chopart JL (1983) Study of the root system of pearl millet (Pennisetum typoides) in a sandy soil in Senegal. Agron Tropic 38:37–51

    Google Scholar 

  • Clotault J, Thuillet AC, Buiron M, De MS, Couderc M, Haussmann Bettina IG, Mariac C, Vigouroux Y (2011) Evolutionary history of pearl millet (Pennisetum glaucum [L.] R. Br.) and selection of flowering genes since its domestication. Mol Biol Evol 29:1199–1212. https://doi.org/10.1093/molbev/msr287

    Article  CAS  PubMed  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crossa J, Rodriguez PP, Cuevas J, Montesinos-Lopez O, Jarquin D, Campos-los G, Burgueno J, Gonzalez- Camacho JM, Elizalde SP, Beyene Y, Dreisigacker S, Singh R, Zhang X, Gowda M, Roorkiwal M, Rutkoski J, Varshney RK (2017) Genomic selection in plant breeding: Methods, Models and Perspectives. Trends Plant Sci 22:961–975

    Article  CAS  PubMed  Google Scholar 

  • Cruz de Carvalhi MH (2008) Drought stress and reactive oxygen species. Production, scavenging and signaling. Plant Signal Behav 3:156–165

    Article  Google Scholar 

  • Dai A (2012) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58

    Article  Google Scholar 

  • Daisuke UNO (2005) Farmers’ selection of local ad improved pearl millet varieties in Ovamboland, Northern Namibia. Afr Study Monogr 30:107–117

    Google Scholar 

  • Das RR, Vinayan MT, Patel MT, Phagna RK, Singh SB, Shahi JP, Sarma A, Barua NS, Babu R, Seetharam K, Burgueno JA, Zaidi PH (2020) Genetic gains with rapid-cycle genomic selection for combined drought and waterlogging tolerance in tropical maize (Zea mays L.). The Plant Genome 13. https://doi.org/10.1002/tpg2.20035

  • Debieu M, Kanfany G, Laplaze L (2017) Pearl millet genome: Lessons from a tough crop. Trends Plant Sci 22:911–913

    Article  CAS  PubMed  Google Scholar 

  • Debieu M, Sine B, Passot S, Grondin A, Akata E, Gangashetty P, Vadez V, Gantet P, Fonceka D, Cournac L, Hash CT, Kane NA, Vogouroux Y, Laplaze L (2018) Response to early drought stress and identification of QTLs controlling biomass production under drought in pearl millet. PLoS ONE. https://doi.org/10.1371/journal.pone.0201635

    Article  PubMed  PubMed Central  Google Scholar 

  • Deshmukh SB, Mandavia MK (2017) Effects of PEG-6000 induced water deficit stress on physiological and biochemical characteristics of pearl millet seedlings. Int J Current Microbiol App Sci 6:1581–1591

    Article  CAS  Google Scholar 

  • Devaux P, Kasha KJ (2009) Overview of Barley Doubled Haploid Production. In: Touraev A, Forster BP, Jain SM (eds) Advances in Haploid Production in Higher Plants. Springer, Dordrecht, pp 47–63

    Chapter  Google Scholar 

  • Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devos KM, Pittaway TS, Reynolds A, Gale MD (2000) Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice. Theor Appl Genet 100:190–198

    Article  CAS  Google Scholar 

  • Diack O, Kane NA, Berthouly-Salazar C, Gueye MC, Diop BM, Fofana A, Sy O, Tall H, Zekraoui L, Piquet M, Couderc M, Vigouroux Y, Diouf D, Barnaud A (2017) New genetic insights into pearl millet diversity as revealed by characterization of early- and late-flowering landraces from Senegal. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00818

    Article  PubMed  PubMed Central  Google Scholar 

  • Diack O, Kanfany G, Gueye MC, Sy O, Fofana A, Tall H, Serba DD, Zekraoui S, CB, Vigouroux Y, Diouf D, Kane NA, (2020) GWAS unveils features between early- and late-flowering pearl millets. BMC Genomics. https://doi.org/10.1186/s12864-020-07198-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong A, Yang Y, Liu S, Zenda T, Liu X, Wang Y, Li J, Duan H (2020) Comparative proteomics analysis of two maize hybrids revealed drought-stress tolerance mechanisms. Biotechnol Equip 34:763–780

    Article  CAS  Google Scholar 

  • drought resistance in pearl millet (Pennisetum americanum (L.)

  • Dudhate A, Shinde H, Yu P, Tsugama D, Gupta SK, Liu S, Takano T (2021) Comprehensive analysis of NAC transcription factor family uncovers drought and salinity stress response in pearl millet (Pennisetum glaucum). BMC Genomics. https://doi.org/10.1186/s12864-021-07382-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Dujardin M, Hanna WW (1987) Inducing male fertility in crosses between pearl millet and Pennisetum orientale Rich. Crop Sci 27:65–68

    Article  Google Scholar 

  • Duke JA (1983) Cenchrus ciliaris L. Handbook of Energy Crops [Unpublished]. Purdue University, Center for New Crops and Plants Products. Retrieved from http://www.hort.purdue.edu/ newcrop/duke_energy/Cenchrus_ciliaris.html

  • Dwivedi SL, Upadhyaya HD, Stalker HT, Blair MW, Bertioli DJ, Nielen S, Ortiz R (2008) Enhancing crop gene pools with beneficial traits using wild relatives. Plant Breed Rev 30:179–230

    Article  CAS  Google Scholar 

  • Eliazer Nelson ARL, Ravichandran K, Antony U (2019) The impact of the green revolution on indigenous crops of India. J Ethnic Food. https://doi.org/10.1186/s42779-019-0011-9

    Article  Google Scholar 

  • FAO (2020) The State of Food and Agriculture 2020. Overcoming water challenges in agriculture, Rome. https://doi.org/10.4060/cb1447en

    Book  Google Scholar 

  • Faye A, Sine B, Chopart JL, Grondin A, Lucas M, Diedhiou AG, Gantet P, Cournac L, Min D, Audebert A, Kane A, Laplaze L (2019) Development of a model estimating root length density from root impacts on a soil profile in pearl millet (Pennisetum glaucum (L.) R. Br). Application to measure root system response to water stress in field conditions. PLoS ONE 14. https://doi.org/10.1371/journal.pone.0214182

  • Filipowicz W, Bhattacharyya S, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  • Fleury D, Langridge P (2011) Making the most of ‘omics’ for crop breeding. Trends Biotechnol 29:33–40

    Article  PubMed  CAS  Google Scholar 

  • Fussell LK, Bidinger FR, Bieler P (1991) Crop physiology and breeding for drought tolerance: research and development. Field Crops Res 27:183–199

    Article  Google Scholar 

  • Gaufichon L, Prioul JL, Bachelier B (2010) What are the prospects of genetic improvement in drought-tolerant crop plants. https://fundacion-antama.org/wp-content/uploads/2011/04/20110425-Drought-tolerance_March-2011_FARM.pdf

  • Ghatak A, Chaturvedi P, Bachmann G, Valledor L, Ramšak Ž, Bazargani MM, Bajaj P, Jegadeesan S, Li W, Sun X, Gruden K, Varshney RK, Weckwerth W (2021) Physiological and proteomic signatures reveal mechanisms of superior drought resilience in pearl millet compared to wheat. Front Plant Sci. https://doi.org/10.3389/fpls.2020.600278

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghatak A, Chaturvedi P, Paul P, Agrawal GK, Rakwal R, Kim ST, Weckwerth W, Gupta R (2017a) Proteomics survey of Solanaceae family: current status and challenges ahead. J Proteom 169:41–57

    Article  CAS  Google Scholar 

  • Ghatak A, Chaturvedi P, Weckwerth W (2017b) Cereal crop proteomics: systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00757

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghatak, A, Chaturvedi P, Nagler M, Roustan V, Lyon D, Bachmann G, Postl W, Schrofl A, Desai N, Varshney RK, Weckwerth W (2016) Comprehensive tissue-specific proteome analysis of drought stress responses in Pennisetum glaucum (L.) R. Br. (Pearl millet). J Proteom 143:

  • –135.

  • Giovannoni JJ, Wing RA, Ganal MW, Tanksley SD (1991) Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res 19:6553–6558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goche T, Shargie NG, Cummins I, Adrian B, Chivasa S, Ngara R (2020) Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation. Sci Rep. https://doi.org/10.1038/s41598-020-68735-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Govindaraj M, Shanmugasundaram P, Sumathi P, Muthiah AR (2010) Simple, rapid and cost effective screening method for drought resistant breeding in pearl millet. Electronic J Plant Breed 1:590–599

    Google Scholar 

  • Goyal V, Jain S, Bishnoi NR, Munjal R (2001) Leaf water relations, diffusive resistance and proline accumulation in hybrid pearl millet under depleting soil moisture content. Indian J Plant Physiol 6:41–45

    CAS  Google Scholar 

  • Gregory PJ (1983) Response of temperature in a stand of pearl millet (Pennisetum typhoides S. and H.) III. Root Development J Exp Bot 34:744–756

    Article  Google Scholar 

  • Grewal D, Manito C, Bartolome V (2011) Doubled haploids generated through anther culture from crosses of elite Indica and Japonica cultivars and /or lines of rice: Large scale production, agronomic performance and molecular characterization. Crop Sci 51:2544–2553

    Article  Google Scholar 

  • Grondin A, Affortit P, Tranchant-Dubreuil C, de la Fuente-Cantó C, Mariac C, Gantet P, Vadez V, Vigouroux Y, Laplaze L (2020) Aquaporins are main contributors to root hydraulic conductivity in pearl millet [Pennisetum glaucum (L) R. Br.]. PLoS ONE 15. https://doi.org/10.1371/journal.pone.0233481

  • Gulia SK, Wilson J, Carter J, Singh BP (2007) Progress in grain pearl millet research and market development. In: Janick J, Whipkey A (eds) Issues in new crops and new uses. ASHS Press, Alexandria, VA, pp 196–203

    Google Scholar 

  • Ha Duc BD, Perne J (1982) Androgenesis in pearl millet: I Analysis of plants obtained from microspore culture. Z Pflanzenphysiol 108:317–327

    Article  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Hammer K Das Domestikationssyndrom (1984) Die Kulturpflanze 32:11–34 https://doi.org/10.1007/BF02098682

  • Hamza NB, Sharma N, Tripathi A, Mishra NS (2016) MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expr Patterns 20:88–98. https://doi.org/10.1016/j.gep.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  • Harinarayana GS, Rao AS, Mengesha MH (1988) Prospects of utilizing genetic diversity in pearl millet. In: Paroda et al (ed) Genetic Resources, Indian Perspective. NBPGR, New Delhi, India, pp 170–182

  • Harlan JR, de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Haussmann BIG, Parzies HK, Presterl T, Susic Z, Miedaner T (2004) Plant genetic resources in crop improvement. Plant Genet Res 2:3–21

    Article  Google Scholar 

  • Heffner EL, Sorrells Mark E, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Henson IE (1981) Stomatal responses of pearl millet (Pennisetum americanum (L.) Leeke) genotypes, in relation to abscisic acid and water stress. J Exp Bot 32:1211–1221

    Article  CAS  Google Scholar 

  • Henson IE (1982) Osmotic adjustment to water stress in pearl millet (Pennisetum americanum (L.) Leeke) in a controlled environment. J Exp Bot 33:78–87

    Article  Google Scholar 

  • Henson IE, Mahalakshmi V, Bidinger FR, Alagarswamy G (2006) Osmotic adjustment to water stress in pearl millet (Pennisetum americanum [L.] Leeke) under field conditions. Plant Cell Environ 5:147–154

    Article  Google Scholar 

  • Hickey L, Hafeez AN, Robinson H, Jackson SA, Lee-Bertioli SCM, Tester M, Gao C, Godwin ID, Hayes B, Wulff Brande BH (2019) Breeding crops to feed 10 billion. Nature Biotechnol 37:744–754. https://doi.org/10.1038/s41587-019-0152-9

    Article  CAS  Google Scholar 

  • Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2014) High- Throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS ONE. https://doi.org/10.1371/journal.pone.0097047

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Ann Rev Plant Physiol 24:519–570

    Article  CAS  Google Scholar 

  • Hussain T, Franks C (2019) Discovery of Sorghum haploid induction system. In ZY Zhao, J Dahlberg (ed), Sorghum. Methods in Molecular Biology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9039-9_4

  • investigated by a combination of genome scan and association

  • IPCC (2019).Summary for Policymakers. In PR Shukla et al (ed). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [In press].

  • Iwuala E, Odjegba V, Sharma V, Alam A (2020) Drought stress modulates expression of aquaporin gene and photosynthetic efficiency in Pennisetum glaucum (L.) R. Br. genotypes. Current Plant Biol. https://doi.org/10.1016/j.cpb.2019.100131

  • Jaiswal S, Antala TJ, Mandavia MK, Chopra M, Jasrotia RS, Tomar RS, Kheni J, Angadi UB, Iquebal MA, Golakia BA, Rai A, Kumar D (2018) Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum (L.) and development of web-genomic resources. Scientific Reports. https://doi.org/10.1038/s41598-018-21560-1

  • Jangra S, Rani A, Yadav RC, Yadav NR, Yadav D (2019) Introgression of terminal drought stress tolerance in advance lines of popular pearl millet hybrid through molecular breeding. Plant Physiol Rep 24:359–369. https://doi.org/10.1007/s40502-019-00464-w

    Article  CAS  Google Scholar 

  • Jedmowski C, Ashoub A, Beckhaus T, Berberich T, Karas M, Bruggemann W (2014) Comparative analysis of Sorghum bicolor proteome in response to drought stress and following recovery. Int J Proteom. https://doi.org/10.1155/2014/395905

    Article  Google Scholar 

  • Jha S, Maity S, Singh J, Chouhan C, Tak N, Ambatipudi K (2021) Integrated physiological and comparative proteomics analysis of contrasting genotypes of pearl millet reveals underlying salt-responsive mechanisms. Physiol Plant. https://doi.org/10.1111/pp1.13605

    Article  PubMed  Google Scholar 

  • Jha UC, Bohra A, Nayyar H (2019) Advances in ‘omics’ approaches to tackle drought stress in grain legumes. Plant Breed 139:1–27. https://doi.org/10.1111/pbr.12761

    Article  Google Scholar 

  • Jukanti AK, Gowda CLL, Rai KN, Manga VK, Bhatt RK (2016) Crops that feed the world 11. Pearl Millet (Pennisetum glaucum L.): an important source of food security, nutrition and health in the arid and semi-arid tropics. Food Security 8:307–329. https://doi.org/10.1007/s12571-016-0557-y

    Article  Google Scholar 

  • Jogaiah S, Govind SR, Tran LSP (2013) Systems biology-based approaches toward understanding drought tolerance in food crops. Crit Rev Biotechnol 33:23–29. https://doi.org/10.3109/07388551.2012.659174

    Article  PubMed  Google Scholar 

  • Katiyar A, Smita S, Muthusamy SK, Chinnusamy V, Pandey DM, Bansal KC (2015) Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Front Plant Sci 6: 506. https://doi.org/10.3389/fpls.2015.00506

  • Kholova J, Hash CT, Kakkera A, Kocova M, Vadez V (2010a) Constitutive water conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.] J Exp Bot 61:369–377

  • Kholova J, Hash CT, Kumar PL, Yadav RS, Kocova M, Vadez V (2010b) Terminal-drought tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit. J Exp Bot 61:1431–1440. https://doi.org/10.1093/jxb/erq013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kholová J, Hash TC, Aparna K, Kočová M, Vadez V (2010) Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.]. J Exp Bot 61:369–377. https://doi.org/10.1093/jxb/erp314

    Article  CAS  PubMed  Google Scholar 

  • Kholová J, Nepolean T, Hash TC, Supriya A, Rajaram V, Senthilvel S, Kakkera A, Yadav R, Vadez V (2012) Water saving traits co-map with a major terminal drought tolerance quantitative trait locus in pearl millet [Pennisetum glaucum (L.) R. Br.]. Mol Breed 30:1337–1353. https://doi.org/10.1007/s11032-012-9720-0

    Article  Google Scholar 

  • Kholova J, Vadez V, Hash CT, Jeju (2008). Mechanisms underlying drought tolerance in pearl millet (Pennisetum americanum L.). 5th International Crop Science Congress, March 13–18, 2008. South Korea: Book of abstracts

  • Khound R, Santra DK (2020) Omics for proso millet genetic improvement. Nucleus 63:241–247. https://doi.org/10.1007/s13237-020-00339-8

    Article  Google Scholar 

  • Kim J, Ki K, Seung Kim Y, Chung YS (2021) A short review: Comparisons of high-throughput phenotyping methods for detecting drought tolerance. Sci Agric. https://doi.org/10.1590/1678-992X-2019-0300

    Article  Google Scholar 

  • Kim SL, Kim N, Lee H, Lee E, Cheon KS, Kim M, JeonHo B, Choi I, Ji H, Sun YI, Ki-Hing J, Kwon TR, Kim KH (2020) High-throughput phenotyping platform for analyzing drought tolerance in rice. Planta. https://doi.org/10.1007/s00425-020-03436-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Kooyers NJ (2015) The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci 234:155–162

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy L, Zaman-Allah M, Purushothaman R, Irshad M, Vadez V (2011) Plant biomass productivity under abiotic stresses in SAT agriculture. In: Matovicb MD (ed) Biomass—Detection, production and usage. In Tech, London, pp 247–264

    Google Scholar 

  • Krishnan R, Meera MS (2018) Pearl millet minerals: effect of processing on bioaccessibility. J Food Sci Tech 55:3362–3372. https://doi.org/10.1007/s13197-018-3305-9

    Article  CAS  Google Scholar 

  • Kumar A, Tomer V, Kaur A, Kumar V, Gupta K (2018) Millets: a solution to agrarian and nutritional challenges. Agric Food Secur. https://doi.org/10.1186/s40066-018-0183-3

    Article  Google Scholar 

  • Kumar AK, Appa Rao S (1987) Diversity and utilization of pearl millet germplasm. In JR Witcombe and SR Beckerman (ed) Proceedings of the International Pearl Millet Workshop, 7–11 April 1986. ICRISAT Centre, India, pp 69–82

  • Kumari BR, Kolesnikova-Allen MA, Hash CT, Senthilvel S, Nepolean T, Kishor Kavi PB, Riera-Lizarazu O, Witcombe JR, Srivastava RK (2014) Development of a set of chromosome segment substitution lines in pearl millet [Pennisetum glaucum (L.) Br.]. Crop Sci 54:2175–2182. https://doi.org/10.2135/cropsci2013.09.0589

    Article  Google Scholar 

  • Kusaka M, Lalusin AG, Fujimura T (2005) The maintenance of growth and turgor in pearl millet (Pennisetum glaucum [L.] Leeke) cultivars with different root structures and osmo-regulation under drought stress. Plant Sci 168:1–14

    Article  CAS  Google Scholar 

  • Lahiri AN, Kumar V (1966) Studies on plant water relationship III. Further studies on the drought mediated alterations in the performance of bulrush millet. Proc Natl Acad Sci India - B 32:116–129

    Google Scholar 

  • Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends Biotechnol 29:33–40. https://doi.org/10.1016/j.tibtech.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  • Lata C (2015) Advances in Omics for enhancing abiotic stress tolerance in millets. Proc Indian Nat Acad Sci 81:397–417

    Google Scholar 

  • Leeke). I. Factors affecting yields under stress. Aust. J. Agric.

  • Lei L, Zheng H, Bi Y et al (2020) Identification of a major QTL and candidate gene analysis of salt tolerance at the bud burst stage in rice (Oryza sativa L.) Using QTL-Seq and RNA-Seq. Rice. https://doi.org/10.1186/s12284-020-00416-1

  • Lewis RB, Hiler EA, Jordan WR (1974) Susceptibility of grain sorghum to water deficit at three growth stages. Agron J 66:589–591

    Article  Google Scholar 

  • Li B, Sun W, Di Wu, Wang M, Yu Yu, Chen G, Yang W, Lin Z, Zhang X, Duan L, Yang X (2020a) Phenomics-based GWAS analysis reveals the genetic architecture for drought resistance in cotton. Plant Biotechnol J 18:2533–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Li Y, Ke Q, Kwak SS, Zhang S, Deng X (2020b) Physiological and differential proteomic analyses of imitation drought stress response in Sorghum bicolor root at the seedling stage. Int J Mol Sci. https://doi.org/10.3390/ijms21239174

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Rasheed A, Hickey LT, He Z (2018a) Fast-forwarding genetic gain. Trends Plant Sci 23:184–186

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Ruperao P, Batley J, Edwards D, Khan T, Colmer TD, Pang J, Siddique KHM, Sutton T (2018b) Investigating drought tolerance in chickpea using genome-wide association Mapping and genomic selection Based on Whole-Genome Resequencing Data. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00190

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Li Y, Ke Q, Kwak SS, Zhang S, Deng X (2020c) Physiological and differential proteomic analyses of imitation drought stress response in Sorghum bicolor root at the seedling stage. Int J Mol Sci. https://doi.org/10.3390/ijms21239174

    Article  PubMed  PubMed Central  Google Scholar 

  • Liedtke JD, Hunt CH, Jaeggli George B, Laws K, Watson J, Potgieter AB, Cruickshank A, Jordan DR (2020) High –Through put phenotyping of dynamic canopy traits associated with stay green in grain sorghum. Plant Phenom. https://doi.org/10.34133/2020/4635153

  • Lippman ZB, Semel Y, Zamir D (2007) An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev 17:545–552. https://doi.org/10.1016/j.gde.2007.07.007

    Article  CAS  PubMed  Google Scholar 

  • Liu CJ, Devos KM, Witcombe JR, Pittaway TS, Gale MD (1996) The effect of genome and sex on recombination rates in Pennisetum species. Theor Appl Genet 93:902–908

    Article  CAS  PubMed  Google Scholar 

  • Liu CJ, King IP, Pittaway TS, Abbos S, Reader SM, Miller TE, Gale MD (1997) Physical and genetical mapping of rDNA sites in Pennisetum (pearl millet). Heredity 78:529–531

    Article  CAS  Google Scholar 

  • Liu CJ, Witcombe JR, Pittaway TS, Nash M, Hash CT, Busso CS, Gale MD (1994) An RFLP-based genetic map of pearl millet (Pennisetum glaucum). Theor Appl Genet 89:481–487. https://doi.org/10.1007/BF00225384

    Article  CAS  PubMed  Google Scholar 

  • Ludlow MM, Muchow RC (1988) Critical evaluation of the possibilities for modifying crops for high production per unit of precipitation. In Bidinger FR and Johansen C (ed). Drought Research Priorities for the Dry/and Tropics, lnternational Crops Research Institute for the Semi-Arid Tropics, Patancheru. Andhra Pradesh. pp 179–211

  • Mahalakshmi V, Bidinger F (1985) Water stress and time of floral initiation in pearl millet. J Agric Sci 105:437–445

    Article  Google Scholar 

  • Mahalakshmi V, Bidinger F, Raju D (1991) Effect of drought stress during grain filling in near-isogenic tall and dwarf hybrids of pearlmillet (Pennisetum glaucum). J Agric Sci 116:67–72

    Article  Google Scholar 

  • Mahalakshmi V, Bidinger FR, Raju DA (1987) Effect of timing of water deficit on pearl millet (Pennisetum americanum). Field Crops Res 115:327–339

    Article  Google Scholar 

  • Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, Springer Nathan M (2015) Transposable elements contribute to activation of maize genes in response to abiotic stress. PLOS Genet. https://doi.org/10.1371/journal.pgen.1004915

    Article  PubMed  PubMed Central  Google Scholar 

  • Manga VK, Kumar A (2011) Cultivar options for increasing pearl millet productivity in arid regions. Indian J Fundamental App Life Sci 1:200–208

    Google Scholar 

  • mapping. Mol Ecol. 20:80–91

  • Maqbool MA, Beshir AR, Khokhar ES (2020) Doubled haploids in maize: Development, Deployment and Challenges. Crop Sci 60:2815–2840

    Article  CAS  Google Scholar 

  • Maqsood M, Ali ANA (2007) Effects of drought on growth, development, radiation use efficiency and yield of finger millet (Eleucine coracana). Pak J Bot 39:123–134

    Google Scholar 

  • Mariac C, Jehin L, Saı

  • Mariac C, Jehin L, Saidou AA et al (2011) Genetic basis of pearl millet adaptation along an environmental gradient investigated by a combination of genome scan and association mapping. Mol Ecol 20:80–91

    Article  PubMed  Google Scholar 

  • Masojidek J, Trivedi S, Halshaw L, Alexiou A, Hall David O (1991) The synergistic effect of drought and light stresses in sorghum and pearl millet. Plant Physiol 96:198–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew I, Shimelis H, Shayanowako AIT, Laing M, Chaplot V (2019) Genome-wide association study of drought tolerance and biomass allocation in wheat. PLoS ONE. https://doi.org/10.1371/journal.pone.0225383

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathur PN (2012) Global strategy for the ex-situ conservation of pearl millet and its wild relatives. Global Crop Diversity Trust, Rome, Italy

  • Matsuura A, Tsuji W, An P, Inanaga S, Kouhei M (2012) Effect of pre- and post-heading water deficit on growth and grain yield of four millets. Plant Prod Sci 15:323–331. https://doi.org/10.1626/pps.15.323

    Article  Google Scholar 

  • McIntire J, Fussell LK (1989) On-farm Experiments with Millet in Niger: Crop Establishment, Yield Loss Factors and Economic Analysis. Exp Agri 25:217–233

    Article  Google Scholar 

  • Medina S, Gupta SK, Vadez V (2017) Transpiration response and growth in pearl millet parental lines and hybrids bred for contrasting rainfall environments. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01846

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer RC, Steinfath M, Lisec J, Becher M, Wituckawall H, Torjek O, Fiehn O, Eckardt A, Willmitzer L, Selbig J, Altmann T (2007) The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci U.S.A. 104: 4759–4764. https://doi.org/10.1073/pnas.0609709104

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis – a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murty BR, Upadhyaya MK, Manchanda PL (1967) Classification and cataloguing of a world collection of genetic stocks of Pennisetum. Indian J Genet Plant Breed 27:313–394

    Google Scholar 

  • Niu Z, Jiang A, Hammad WA, Oladzadabbasabadi A, Xu SS, Mergoum M, Elias EM (2014) Review of doubled haploid production in durum and common wheat through wheat × maize hybridization. Plant Breed 133:313–320

    Article  CAS  Google Scholar 

  • Ogbonnaya FC, Abdalla O, Mujeeb-Kazi A, Kazi AG, Xu SS, Gosman N, Lagudah Evans S, Bonnett D, Sorrells Mark E, Tsujimoto H (2013) Synthetic hexaploids: Harnessing species of the primary gene pool for wheat improvement. Plant Breed Rev 37:35–122

    Article  Google Scholar 

  • Pan J, Li Z, Wang Q, Garrell Anna K, Liu M, Guan Y, Zhou W, Liu W (2018a) Comparative proteomic investigation of drought responses in foxtail millet. BMC Plant Biol 18:315. https://doi.org/10.1186/s12870-018-1533-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan J, Li Z, Wang Q et al (2018b) Comparative proteomic investigation of drought responses in foxtail millet. BMC Plant Biol. https://doi.org/10.1186/s12870-018-1533-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Passot S, Gnacko F, Moukouanga D, Lucas M, Guyomarch S, Ortega BM, Atkinson JA, Belko MN, Bennett MJ, Gantet P, Wells DM, Guédon Y, Vigouroux Y, Verdeil JL, Muller B, Laplaze L (2016) Characterization of pearl millet root architecture and anatomy reveals three types of lateral roots. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00829

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil HE (2010) Physiological screening of drought tolerance in pearl millet hybrids under polyethylene glycol (PEG) induced water stress. Int J Agri Sci 6:8–13

    Google Scholar 

  • Pauk J, Jancso M, Simon-Kiss I (2009) Rice Doubled Haploids and Breeding. In: Touraev A, Forster BP, Jain SM (eds) Advances in Haploid Production in Higher Plants. Springer, Dordrecht, pp 189–197

    Chapter  Google Scholar 

  • Pearson C (1984) Pennisetum millet. In: Goldworthy PR, Fisher NM (eds) The physiology of tropical field crops. John Wiley and Sons, Chichester, pp 281–304

    Google Scholar 

  • Powell W, Caligari PDS, McNicol JW, Jinks JL (1985) The use of doubled haploids in barley breeding. An assessment of multivariate cross prediction methods. Heredity 55:249–254. https://doi.org/10.1038/hdy.1985.98

    Article  Google Scholar 

  • Singh PK, Indoliya Y, Agrawal L, Awasthi S, Deeba F, Dwivedi S, Chakrabarty D, Shirke PA, Pandey V, Singh N, Dhankher OP, Barik SK, Tripathi RD (2022a) Genomic and proteomic responses to drought stress and biotechnological interventions for enhanced drought tolerance in plants. Current Plant Biol 29:2214–6628. https://doi.org/10.1016/j.cpb.2022.100239

    Article  Google Scholar 

  • Presterl T, Weltzien E (2003) Exploiting heterosis in pearl millet population breeding in arid environments. Crop Sci 43:767–776

    Article  Google Scholar 

  • Prigge V, Melchinger AE (2012) Production of Haploids and Doubled Haploids in Maize. In: Loyola-Vargas V, Ochoa-Alejo N (ed). Plant Cell Culture Protocols. Methods in Molecular Biology (Methods and Protocols. Humana Press, Totowa, NJ. pp 161–172

  • Priyaadharshini M, Sritharan N, Senthil A, Marimuthu S (2019) Physiological studies on effect of chitosan nanoemulsion in pearl millet under drought condition. J Pharmacog Phytochem Res 8:3304–3307

    CAS  Google Scholar 

  • Prohens J, Gramazio P, Dempewolf PM, H, Kilian B, Diez MJ, Fita A, Herraiz FJ, Rodriguez-Burruezo A, Soler S, Knall S, Vilanova S, (2017) Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica. https://doi.org/10.1007/s10681-017-1938-9

    Article  Google Scholar 

  • Pucher A, Sy O, Angarawai II, Gondah J, Zangre R, Ouedraogo M, Sanogo MD, Boureima S, Hash CT, Haussmann Bettina IG (2015) Agro-morphological characterization of West and Central African pearl millet accessions. Crop Sci 55:737–748

    Article  Google Scholar 

  • Pujar M, Gangaprasad S, Govindaraj M et al (2020) Genome-wide association study uncovers genomic regions associated with grain iron, zinc and protein content in pearl millet. Sci Rep. https://doi.org/10.1038/s41598-020-76230-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Quarrie SA, Lazic-Jancic V, Kovacevic D, Steed A, Pekic S (1999) Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. J Exp Bot 50:1299–1306

    Article  CAS  Google Scholar 

  • Radhouane L (2008) Hydrous characteristics of pearl millet (Pennisetum glaucum (L.) Br.) under drought. CR Biol 331:206–214

    Article  Google Scholar 

  • Rai KN, Appa Rao S, Reddy KN (1997) Pearl millet. In: D Fuciillo L Sears and P Stapleton (ed) Biodiversity in trust: Conservation and use of plant genetic resources in CGIAR centers. Cambridge, Cambridge University Press. pp 243–258

  • Ramegowda V, Gill US, Sivalingam PN, Gupta A, Gupta C, Govind G, Nataraja KN, Pereira A, Udayakumar M, Mysore KS, Kumar MS (2017) GBF3 transcription factor imparts drought tolerance in Arabidopsis thaliana. Sci Rep. https://doi.org/10.1038/s41598-017-09542-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Raubach S, Kilian B, Dreher K et al (2020) From bits to bites: Advancement of the Germinate platform to support genetic resources collections and pre breeding informatics for crop wild relatives. Crop Sci. https://doi.org/10.1002/csc2.20248

    Article  Google Scholar 

  • Reifschneider FJB, Hussain S (2004) Research organizations of the world. CGIAR. Encycl Grain Sci, 26–36

  • Res. 38, 37–48

  • Rhone B, Defrance D, Berthouly-Salazar C, Mariac C, Cubry P, Couderc M, Dequincey A, Assoumanne A, Kane Ndjido A, Sultan B, Barnaud A, Vigouroux Y (2020) Pearl millet genomic vulnerability to climate change in West Africa highlights the need for regional collaboration. Nat Commun. https://doi.org/10.1038/s41467-020-19066-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Riedelsheimer C, Lisec J, Czedik-Eysenberg A, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc Natl Acad Sci, USA 109:8872–8877. https://doi.org/10.1073/pnas.1120813109

    Article  PubMed  PubMed Central  Google Scholar 

  • Robert T, Khalfallah N, Martel E, Lamy F, Poncet V, Allinne C, Remigereau MS, Rekima S, Leveugle M, Lakis G, Yakovlev SS, Sarr A (2011) Pennisetum. In: Kole C (ed) Wild crop relatives: Genomic and breeding resources. Springer, Heidelberg, Berlin, pp 217–255

    Chapter  Google Scholar 

  • Ross-Ibarra J, Morrell PL, Gaut BS (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci USA 104:8641–8648. https://doi.org/10.1073/pnas.0700643104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouw ADE, Winkel T (1998) Drought avoidance by asynchronous flowering in pearl millet stands cultivated on-farm and on-station in Niger. Exp Agric 34:19–39

    Article  Google Scholar 

  • Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS (2010) Sugar input, metabolism, and signalling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3:942–955

    Article  CAS  PubMed  Google Scholar 

  • Saidou AA, Mariac C, Luong V, Pham JL, Bezancon G, Vigouroux Y (2009) Association studies identify natural variation at PHYC linked to flowering time and morphological variation in pearl millet. Genetics 182:899–910. https://doi.org/10.1534/genetics.109.102756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sani DO, Boureima MM (2014) Effect of polyethylene glycol (PEG) on germination and seedling growth of pearl millet [Pennisetum glaucum (L.) R. Br.] and LD 50 for in-vitro screening for drought tolerance. African J Biotechnol 13:3742–3747. https://doi.org/10.5897/AJB2013.13514

    Article  Google Scholar 

  • Sastry PS, Mallikarjuna N (2014) Induction of androgenesis in pearl millet. Univers J Agric Res 2:216–223

    Article  Google Scholar 

  • Satyavathi TC, Khandelwal V, Rajpurohit BS, Supriya A, Beniwal BR, Kamlesh K, Sushila B, Shripal S, Mahesh CK, Yadav SL (2018) Pearl millet hybrids and varieties. ICAR-All India Coordinated Research Project on Pearl millet, Mandor, Jodhpur, India, p 142

    Google Scholar 

  • Sehgal D, Rajaram V, Armstead IP, Vadez V, Yadav YP, Hash CT, Yadav RS (2012) Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant Biol. https://doi.org/10.1186/1471-2229-12-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Sehgal D, Skot L, Singh R, Srivastava RK, Das SP, Taunk J, Sharma PC, Pal R, Raj B, Hash CT, Yada RS (2015) Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits. PLoS ONE. https://doi.org/10.1371/journal.pone.0122165

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo PJ, Lee SB, Suh Mi C, Mi-J P, Go YS, Park CM (2011) The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell 23:1138–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serba DD, Perumal R, Tesso TT, Min D (2017) Status of global pearl millet breeding programs and the way forward. Crop Sci 57:2891–2905. https://doi.org/10.2135/cropsci2016.11.0936

    Article  Google Scholar 

  • Shabannejad M, Bihamta MR, Majidi-Hervan E, Alipour H, Ebrahimi A (2021) A classic approach for determining genomic prediction accuracy under terminal drought stress and well-watered conditions in wheat landraces and cultivars. PLoS ONE. https://doi.org/10.1371/journal.pone.0247824

    Article  PubMed  PubMed Central  Google Scholar 

  • Shanker AK, Maheswari M, Yadav SK, Desai S, Bhanu D, Attal NB, Venkateswarlu B (2014) Drought stress responses in crops. Funct Integr Genomics 14:11–22. https://doi.org/10.1007/s10142-013-0356-x

    Article  CAS  PubMed  Google Scholar 

  • Sharma PC, Sehgal D, Singh D, Singh G, Yadav RS (2011) A major terminal drought tolerance QTL of pearl millet is also associated with reduced salt uptake and enhanced growth under salt stress. Mol Breed 27:207–222

    Article  CAS  Google Scholar 

  • Sharma PC, Singh D, Sehgal D, Singh G, Hash CT, Yadav RS (2014) Further evidence that a terminal drought tolerance QTL of pearl millet is associated with reduced salt uptake. Environ Exp Bot 102:48–57. https://doi.org/10.1016/j.envexpbot.2014.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Sharma R, Govindaraj M, Mahala RS, Satyavathi TC, Srivastava RK, Gumma MK, Kilian B (2020) Harnessing wild relatives of pearl millet for germplasm enhancement: Challenges and Opportunities. Crop Sci. https://doi.org/10.1002/csc2.20343

    Article  Google Scholar 

  • Sharma S, Upadhyaya HD, Varshney RK, Gowda CLL (2013) Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00309

    Article  PubMed  PubMed Central  Google Scholar 

  • Shikha M, Kanika A, Rao AR, Mallikarjuna MG, Gupta HS, Nepolean T (2017) Genomic selection for drought tolerance using genome-wide SNPs in maize. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00550

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinde H, Dudhate A, Anand L, Tsugama D, Gupta SK, Liu S, Tekano T (2020) Small RNA sequencing reveals the role of pearl millet miRNAs and their targets in salinity stress responses. South African J Bot 132:395–402

    Article  CAS  Google Scholar 

  • Shivhare R, Asif MH, Lata C (2020) Comparative transcriptome analysis reveals the genes and pathways involved in terminal drought tolerance in pearl millet. Plant Mol Biol 103:639–652. https://doi.org/10.1007/s11103-020-01015-w

    Article  CAS  PubMed  Google Scholar 

  • Shivhare R, Lata C (2019) Assessment of pearl millet genotypes for drought stress tolerance at early and late seedling stages. Acta Physiol Plant. https://doi.org/10.1007/s11738-019-2831-z

    Article  Google Scholar 

  • Singh VK, Khan AW, Jaganathan D, Thudi M, Roorkiwal M, Tkagi H, Garg V, Kumar V, Chitikineni A, Gaur PM, Sutton T, Terauchi R, Varshney RK (2016) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotech J 14:2110–2119

    Article  CAS  Google Scholar 

  • Singh V, Sinha P, Obala J, Khan AW, Chitikineni A, Saxena RK, Varshney RK (2022b) QTL-seq for the identification of candidate genes for days to flowering and leaf shape in pigeonpea. Heredity. https://doi.org/10.1038/s41437-021-00486-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Smarda P, Bures P, Horova L, Leitch Ilia J, Mucina L, Pacini E, Tichy L, Grulich V, Rotreklova O (2014) Ecological and evolutionary significance of genomic GC content diversity in monocots. Proc Natl Acad Sci USA, 111:4096–5002. https://doi.org/10.1073/pnas.1321152111

  • Soman P, Jayachandra R, Bidinger FR (1987) Uneven variation in plant to plant spacing in pearl millet. Agron J 79:891–895

    Article  Google Scholar 

  • Soman P, Peacock JM (1985) A laboratory technique to screen seedling emergence of sorghum and pearl millet at high soil temperature. Exp Agric 21:335–341

    Article  Google Scholar 

  • Srivastava RK, Singh RB, Pujarula VL, Bollam S, Pusuluri M, Chellapilla TS, Yadav RS, Gupta R (2020) Genome-wide association studies and genomic selection in pearl millet: Advances and prospects. Front Genet. https://doi.org/10.3389/fgene.2019.01389

    Article  PubMed  PubMed Central  Google Scholar 

  • Stitch B, Haussmann Bettina IG, Pasam R, Bhosale S, Hash CT, Melchinger AE, Parzies Heiko A (2010) Patterns of molecular and phenotypic diversity in pearl millet [Pennisetum glaucum (L.) Br.] from west and central Africa and their relation to geographical and environmental parameters. BMC Plant Biol. https://doi.org/10.1186/1471-2229-10-216

  • Stomph TJ (1990) Seedling establishment in pearl millet [Pennisetum glaucum (L.) R. Br.]. The influence of genotype, physiological seed quality soil temperature and soil water. Dissertation, University of Reading UK

  • Subramanian VB, Maheswari M (1989) Comparison of physiological responses of pearl millet and sorghum to water stress. Proc Indian Acad Sci (plant Science) 99:517–522. https://doi.org/10.1007/BF03053420

    Article  Google Scholar 

  • Sun M, Huang D, Zhang A, Khan I, Yan H, Wang X, Zhang X, Zhang J, Huang L (2020) Transcriptome analysis of heat stress and drought stress in pearl millet based on Pacbio full-length transcriptome sequencing. BMC Plant Biol 20:323. https://doi.org/10.1186/s12870-020-02530-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadele Z (2016) Drought adaptation in millets. In: A Shankar (ed). Abiotic and Biotic stress in Plants, Recent Advances and Future Perspectives. https://doi.org/10.5772/60477 ISBN: 978–953–51–2250–0

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Takele A (1997) Genotypic variability in dry matter production, partitioning and grain yield of tef [Eragrostis tef (Zucc.) Trotter] under moisture deficit. SINET: Ethiopian J Sci 20: 177–188

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277:1063–1066. https://doi.org/10.1126/science.277.5329.1063

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203. https://doi.org/10.1007/BF00223376

    Article  CAS  PubMed  Google Scholar 

  • Tardieu F (2012) Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J Exp Bot 63:25–31

    Article  CAS  PubMed  Google Scholar 

  • Tardieu F, Simonneau T, Muller B (2018) The physiological basis of drought tolerance in crop plants: a scenario dependent probabilistic approach. Ann Rev Plant Biol 69:733–759

    Article  CAS  Google Scholar 

  • Tardieu F, Varshney RK, Tuberosa R (2017) Improving crop performance under drought - cross-fertilization of disciplines. J Exp Bot 68:1393–1398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327: 818–822. https://doi.org/10.1126/science.1183700

  • Thammiraju SR (2000) Tissue culture studies in pearl millet [Pennisetum glaucum (L) R. Br.] with special reference to in vitro doubled haploid production. Dissertation, Andhra University

  • Tharanya M, Kholova J, Sivasakthi K, Sehgal D, Hash CT, Raj B, Srivastava RK, Baddam R, Thirunalasundari T, Yadav R, Vadez V (2018) Quantitative trait loci (QTLs) for water use and crop production traits co-locate with major QTL for tolerance to water deficit in a fine-mapping population of pearl millet (Pennisetum glaucum L. R.Br.). Theor Appl Genet 131:1509–1529. https://doi.org/10.1007/s00122-018-3094-6

    Article  CAS  PubMed  Google Scholar 

  • Tuberosa R, Turner NC, Cakir M (2014) Two decades of InterDrought conferences: are we bridging the genotype-to-phenotype gap? J Exp Bot 65:6137–6139

    Article  PubMed  CAS  Google Scholar 

  • Turc O, Tardieu F (2018) Drought affects abortion of reproductive organs by exacerbating developmentally driven processes via expansive growth and hydraulics. J Exp Bot 69:3245–3254

    Article  CAS  PubMed  Google Scholar 

  • Turner NC, Jones MM (1980) Turgor maintenance by osmotic adjustment: a review and evaluation. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 87–103

    Google Scholar 

  • Upadhyaya HD, Reddy KN, Ahmed MI, Kumar V, Gumma MK, Ramachandran S (2017) Geographical distribution of traits and diversity in the world collection of pearl millet [Pennisetum glaucum (L.) Br., synonym: Cenchrus americanus (L.) Morrone] landraces conserved at the ICRISAT genebank. Genet Res Crop Evol 64:1365–1381

    Article  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘ Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138. https://doi.org/10.1016/j.pbi.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  • Usha S, Jyothi MN, Sharadamma N, Dixit R, Devaraj VR, Babu RN (2015) Identification of microRNAs and their targets in fingermillet by high throughput sequencing. Gene 574:210–216

    Article  CAS  PubMed  Google Scholar 

  • Vadez V, Hash T, Bidinger FR, Kholova J (2012) Phenotyping pearl millet for adaptation to drought. Front Physiol. https://doi.org/10.3389/fphys.2012.00386

    Article  PubMed  PubMed Central  Google Scholar 

  • Vadez V, Kholova J, Hummel G, Zhokavets U, Gupta SK, Hash CT (2015) LeasyScan: A novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget. J Exp Bot. https://doi.org/10.1093/jxb/erv251

    Article  PubMed  PubMed Central  Google Scholar 

  • Vadez V, Kholova J, Yadav RS, Hash CT (2013) Small temporal differences in water uptake among varieties of pearl millet (Pennisetum glaucum (L.) R. Br.) are critical for grain yield under terminal drought. Plant Soil 371:447–462. https://doi.org/10.1007/s11104-013-1706-0

    Article  CAS  Google Scholar 

  • Valdisser PAMR, Müller BSF, de Almeida FJE, Morais JOP, Guimarães CM, Borba Tereza CO, de Souza IP, Zucchi MI, Neves LG, Coelho ASG, Brondani C, Vianello RP (2020) Genome-Wide association studies detect multiple QTLs for productivity in Mesoamerican diversity panel of common bean under drought stress. Front Plant Sci. https://doi.org/10.3389/fpls.2020.574674

    Article  PubMed  PubMed Central  Google Scholar 

  • van Heerwaarden J, Doebley J, Briggs WH, Glaubitz JC, Goodman MM, de Jesus Sanchez J, Gonzalez R-I (2011) Genetic signals of origin, spread, and introgression in a large sample of maize landraces. Proc Natl Acad Sci USA 108:1088–1092. https://doi.org/10.1073/pnas.1013011108

    Article  PubMed  Google Scholar 

  • van Oosterom EJ, Bidinger FR, Weltzien RE (2003) A yield architecture framework to explain adaptation of pearl millet to environmental stress. Field Crops Res 80:33–56

    Article  Google Scholar 

  • van Oosterom EJ, Weltzien E, Yadav OP, Bidinger FR (2006) Grain yield components of pearl millet under optimum conditions can be used to identify germplasm with adaptation to arid zones. Field Crops Res 96:407–421

    Article  Google Scholar 

  • Varshney RK, Shi C, Thudi M, Mariac C, Wallace J et al (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35:969–976. https://doi.org/10.1038/nbt.3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Sinha P, Singh VK, Kumar A, Zhang Q, Bennetzen JL (2020) 5Gs for crop genetic improvement. Curr Opin Plant Biol 56:190–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Tuberosa R, Tardieu F (2018) Progress in understanding drought tolerance: from alleles to cropping systems. J Exp Bot 69:3175–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vetriventhan M, Azevedo VCR, Upadhyaya HD, Nirmalakumari A, Potaka JK, Anitha S, Caesar SA, Muthamilarasan M, Bhat BV, Hariprasanna K, Bellundagi A, Cheruku D, Backiyalakshmi C, Santra D, Vanniarajn C, Tonapi VA (2020) Genetic and genomic resources, and breeding for accelerating improvement of small millets: current status and future interventions. Nucleus 63:217–239. https://doi.org/10.1007/s13237-020-00322-3

    Article  Google Scholar 

  • Vigouroux Y, Mariac C, De Mita S, Pham JL, Gérard B, Kapran I, Sagnard F, Deu M, Chantereau J, Ali A, Ndjeunga J, Luong V, Thuillet AC, Saidou AA, Bezancon G (2011) Selection for earlier flowering crop associated with climatic variations in the Sahel. PLoS ONE. https://doi.org/10.1371/journal.pone.0019563

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinoth A, Ravindhran R (2017) Biofortification in Millets: A Sustainable Approach for Nutritional Security. Front Plant Sci 8:29. https://doi.org/10.3389/fpls.2017.00029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vivek BS, Krishna GK, Vengadessan V, Babu R, Zaidi PH, Kha LQ, Mandal SS, Grudloyma P, Takalkar S, Krothapalli K, Singh IS, Ocampo ETM, Xingming F, Burgueno J, Azrai M, Singh RP, Crossa J (2017) Use of genomic estimated breeding values results in rapid genetic gains for drought tolerance in maize. Plant Genome. https://doi.org/10.3835/plantgenome2016.07.0070

    Article  PubMed  Google Scholar 

  • Wang Y, Lin Li, Tang S, Liu J, Zhang H, Zhi H, Jia G, Diao X (2016) Combined small RNA and degradome sequencing to identify mRNAs and their targets in response to drought in foxtail millet. BMG Genomic Data. https://doi.org/10.1186/s12863-016-0364-7

    Article  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds MD, Rey MA, Hatta MA, Hinchliffe A, Steed A, Reynolds D et al (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29. https://doi.org/10.1038/s41477-017-0083-8

    Article  PubMed  Google Scholar 

  • Weckwerth W (2011) Green systems biology-from single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteomics 75:284–305

    Article  CAS  PubMed  Google Scholar 

  • Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341:508–513

    Article  CAS  PubMed  Google Scholar 

  • Winkel T, Do F (1992) Caracteres morphologiques et physiologiques de resistance du mil [Pennisetum glaucum (L.) R. Br.] a la secheresse. L’agron Tropic 46:339–350

    Google Scholar 

  • Winkel T, Payne W, Renno JF (2001) Ontogeny modifies the effects of water stress on stomatal control, leaf area duration and biomass partitioning of Pennisetum glaucum. New Phytol 149:71–82

    Article  CAS  PubMed  Google Scholar 

  • Winkel T, Renno JF, Payne WA (1997) Effect of the timing of water deficit on growth, phenology and yield of pearl millet [Pennisetum glaucum (L.) R Br] grown in Sahelian conditions. J Exp Bot 48:1001–1009

    Article  CAS  Google Scholar 

  • Wu S, Ning F, Zhang Q, Wu X, Wang W (2017) Enhancing Omics research of crop responses to drought under field conditions. Front Plant Sci. https://doi.org/10.3389/fpls.2017.00174

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav A, Khan Y, Prasad M (2019) Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling. Planta 243:749–766. https://doi.org/10.1007/s00425-015-2437-7

    Article  CAS  Google Scholar 

  • Yadav CB, Srivastava RK, Beyon S, Englyst K, Gangashetty PI, Yadav S (2021a) Genetic variability and genome-wide marker association studies for starch traits contributing to low glycaemic index in pearl millet. Food and Energy Security. https://doi.org/10.1002/fes3.341

    Article  Google Scholar 

  • Yadav CB, Srivastava RK, Gangashetty PI, Yadav R, Mur Luis AJ, Yadav RS (2021b) Metabolite diversity and metabolic genome-wide marker association studies for health benefiting nutritional traits in pearl millet grains. Cells. https://doi.org/10.3390/cells10113076

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav OP (2004) CZP 9802 – a new drought-tolerant cultivar of pearl millet. Indian Farm 54:15–17

    Google Scholar 

  • Yadav OP (2006) Heterosis in crosses between landraces and elite exotic populations of pearl millet (Pennisetum glaucum (L.) R. Br.) in arid zone environments. Indian J Genet Plant Breed 66:308–311

    Google Scholar 

  • Yadav OP (2007) Genetic diversification of landrace-based populations of pearl millet (Pennisetum glaucum L. R. Br.) to enhance productivity and adaptation to arid zone environments. Indian J Genet Plant Breed 67:358–364

    Google Scholar 

  • Yadav OP (2008) Performance of landraces exotic elite populations and their crosses in pearl millet (Pennisetum glaucum) in drought and non-drought conditions. Plant Breed 127:208–210

    Article  Google Scholar 

  • Yadav OP (2009) Genetic enhancement of pearl millet for drought prone and hot arid environments of India. Proceedings of the Joint 14th Australasian Plant Breeding Conference and 11th SABRAO Congress, August 10–14, 2009, Cairns, Australia.

  • Yadav OP (2010) Drought response of pearl millet landrace-based populations and their crosses with elite composites. Field Crops Res 118:51–57

    Article  Google Scholar 

  • Yadav OP (2014) Developing drought-resilient crops for improving productivity of drought-prone ecologies. Indian J Genet Plant Breed 74:548–552

    Article  Google Scholar 

  • Yadav OP, Bidinge FR (2007) Utilization, diversification and improvement of landraces for enhancing pearl millet productivity in arid environments. Ann Arid Zone 46:49–57

    Google Scholar 

  • Yadav OP, Bidinger FR (2008) Dual purpose landraces of pearl millet (Pennisetum glaucum) as sources of high stover and grain yield for arid zone environments. Plant Genet Res 6:73–78

    Article  Google Scholar 

  • Yadav OP, Bidinger FR, Singh DV (2009) Utility of pearl millet landraces in breeding dual-purpose hybrids for arid zone environments of India. Euphytica 166:239–247

    Article  Google Scholar 

  • Yadav OP, Rai KN (2011) Hybridization of Indian landraces and African elite composites of pearl millet results in biomass and stover yield improvement under arid zone conditions. Crop Sci 51:1980–1987

    Article  Google Scholar 

  • Yadav OP, Rai KN (2013) Genetic improvement of pearl millet in India. Agric Res 2:275–292. https://doi.org/10.1007/s40003-013-0089-z

    Article  CAS  Google Scholar 

  • Yadav OP, Rai KN, Bidinger FR, Gupta SK, Rajpurohit BS, Bhatnagar SK (2012a) Pearl millet (Pennisetum glaucum) restorer lines for breeding dual-purpose hybrids adapted to arid environments. Indian J Agric Sci 82:922–927

    Google Scholar 

  • Yadav OP, Rai KN, Gupta SK (2012b) Pearl millet: genetic improvement for tolerance to abiotic stresses. In: Tuteja N, Gill SS, Tuteja R (eds) Improving Crop Resistance to Abiotic Stress. Wiley VCH Verlag GmbH and Co, KGaA, pp 261–288

    Google Scholar 

  • Yadav OP, Rajpurohit BS, Kherwa GR, Kumar A (2012c) Prospects of enhancing pearl millet (Pennisetum glaucum) productivity under drought environments of North-Western India through hybrids. Indian J Genet Plant Breed 72:25–30

    Google Scholar 

  • Yadav OP, Singh M, Bhati TK (2008) Initial adoption of drought tolerant pearl millet variety CZP 9802 in diversification of arid farming system. In: Narain P, Singh MP, Kar A, Kathju S, Kumar P (eds) Arid Zone Research Association of India and Scientific Publishers. Jodhpur, India, pp 335–340

    Google Scholar 

  • Yadav OP, Upadhyaya HD, Reddy KN, Jukanti AK, Pandey S, Tyagi RK (2017) Genetic resources of pearl millet: Status and Utilization. Indian J Plant Genet Res 30:31–47

    Article  Google Scholar 

  • Yadav OP, Weltzien RE (1998) New Populations of Pearl Millet for Rajasthan, India. Integrated Systems Project Report No. 10. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India, p 88

  • Yadav OP, Weltzien RE (2000) Differential response of landrace-based populations and high yielding varieties of pearl millet in contrasting environments. Ann Arid Zone 39:39–45

    Google Scholar 

  • Yadav OP, Weltzien-Rattunde E, Bidinger FR (2003) Genetic variation for drought response among landraces of pearl millet (Pennisetum glaucum). Indian J Genet Plant Breed 63:37–40

    Google Scholar 

  • Yadav R, Hash CT, Bidinger F, Cavan GP, Howarth CJ (2002) Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought-stress conditions. Theor Appl Genet 104:67–83. https://doi.org/10.1007/s001220200008

    Article  CAS  PubMed  Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Devos KM, Howarth CJ (2004) Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across stress environments and tester background. Euphytica 136:265–277

    Article  CAS  Google Scholar 

  • Yadav S, Sharma KD (2016) Molecular and morphophysiological analysis of drought stress in plants. Plant Growth, Everlon Cid Rigobelo, Intech Open. https://doi.org/10.5772/65246

    Article  Google Scholar 

  • Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, Xiong L, Yan J (2020) Crop phenomics and high- throughput phenotyping: Past decades, current challenges and future perspectives. Mol Plant 13:187–214

    Article  CAS  PubMed  Google Scholar 

  • Yoshitsu Y, Takakusagi M, Abe A, Takagi H, Uemura A, Yaegashi H, Terauchi R, Takahata Y, Hatakeyama K, Yokoi S (2017) QTL-seq analysis identifies two genomic regions determining the heading date of foxtail millet, Setaria italica (L.) P.Beauv. Breeding Sci 67:518–527

    Article  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989. https://doi.org/10.1038/35103590

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Nguyen HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50:291–302

    Article  CAS  Google Scholar 

  • Zhang X, Huang C, Di Wu, Qiao F, Li W, Duan L, Ke W, Xiao Y, Chen G, Liu Q, Xiong L, Yang W, Yan J (2017) High through put phenotyping and QTL mapping reveals the genetic architecture of maize plant growth. Plant Physiol 173:1554–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are thankful to The Director, ICAR-Indian Agricultural Research Institute, New Delhi for providing necessary facilities for carrying out the study.

Funding

The authors did not received any separate funding for work related to manuscript preparation and publication.

Author information

Authors and Affiliations

Authors

Contributions

Chandan Kapoor & Mukesh Sankar planned the manuscript content, Sumerpal Singh & Nirupma Singh involved in editing and finalizing the manuscript.

Corresponding author

Correspondence to Chandan Kapoor.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Consent from all the co-authors have been taken for publishing the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, C., Singh, S.P., Sankar, S.M. et al. Enhancing drought tolerance in pearl millet (Pennisetum glaucum L.): integrating traditional and omics approaches. Euphytica 218, 104 (2022). https://doi.org/10.1007/s10681-022-03045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-022-03045-5

Keywords

Navigation