Skip to main content
Log in

Wild barley shows a wider diversity in genes regulating heading date compared with cultivated barley

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Heading date (HD) is an important agronomic trait that influences plant adaptability to varying environment and, ultimately, grain yield. In this study, two doubled haploid (DH) populations were used to identify new QTL for HD. One of the DH populations is originated from a cross between an Australian malting barley cv. Franklin and a wild barley accession TAM407227 and the other one is from the cross between a Syrian wild barley SYR01 and an Australian malting barley cv. Gairdner. Using three times of sowing (TOS) differing in daylength and temperature, we investigated quantitative trait loci (QTL) controlling HD from both populations. Fourteen QTL were identified for HD from different populations and sowing dates. The expression of HD related genes varied with the TOS, suggesting a significant QTL × environment interaction. By comparing the positions of previously mapped HD genes and those of QTL detected in this population, we found that eleven of the fourteen QTL identified in this study were located at similar positions to those reported genes for HD. Among the three new potential QTL, one was located at 73.5 cM on chromosome 2H, explaining 19.2% and 4.6% HD of DH lines in spring and summer growing, respectively. The wild barley parent TAM407227 contributed the early maturity allele. HORVU2Hr1G088460 within the interval of QTL could be the candidate gene. The second new QTL was identified on chromosome 3H from a summer sowing trial and the third one on chromosome 4H affected HD of DH lines only under spring sowing condition. These new QTL identified will provide alternative genetic resources for plant breeders developing barley varieties with improved HD adaptability to varying environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alqudah AM, Schnurbusch T (2017) Heading date is not flowering time in spring barley. Front Plant Sci 8:896

    PubMed  PubMed Central  Google Scholar 

  • Arifuzzaman M, Günal S, Bungartz A, Muzammil S, Afsharyan NP et al (2017) Correction: genetic mapping reveals broader role of Vrn-H3 gene in root and shoot development beyond heading in barley. PLOS ONE 12(5):e0177612

    PubMed  PubMed Central  Google Scholar 

  • Backes G, Graner A, Foroughi-Wehr B, Fischbeck G, Wenzel G, Jahoor A (1995) Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.). Theor Appl Genet 90:294–302

    CAS  PubMed  Google Scholar 

  • Börner A, Buck-Sorlin G, Hayes P, Malyshev S, Korzun V (2002) Molecular mapping of major genes and quantitative trait loci determining flowering time in response to photoperiod in barley. Plant Breed 121:129–132

    Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:S18–S31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bullrich L, Appendino M, Tranquilli G, Lewis S, Dubcovsky J (2002) Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1Am. Theor Appl Genet 105:585–593

    CAS  PubMed  Google Scholar 

  • Campoli C, Drosse B, Searle I, Coupland G, von Korff M (2012) Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS. Plant J 69:868–880

    CAS  PubMed  Google Scholar 

  • Castro AJ, Cuesta-Marcos A, Hayes PM, Locatelli A, Macaulay M, Mastandrea N, Silveira M, Thomas WTB, Viega L (2017) The completely additive effects of two barley phenology-related genes (eps2S and sdw1) are explained by specific effects at different periods within the crop growth cycle. Plant Breed 136:663–670

    CAS  Google Scholar 

  • Cattivelli L, Ceccarelli S, Romagosa I, Stanca M (2010) Abiotic stresses in barley: problems and solutions. In: Ullrich SE (ed) Barley: improvement, production, and uses. Wiley, New Jersey, pp 282–306

    Google Scholar 

  • Cockram J, Jones H, Leigh FJ, O’sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244

    CAS  PubMed  Google Scholar 

  • Cockram J, Norris C, O’Sullivan DM (2009) PCR-based markers diagnostic for spring and winter seasonal growth habit in barley. Crop Sci 49:403–410

    CAS  Google Scholar 

  • Constable GA, Rose IA (1988) Variability of soybean phenology response to temperature, daylength and rate of change in daylength. Field Crop Res 18(1):57–69

    Google Scholar 

  • Cuesta-Marcos A, Igartua E, Ciudad FJ, Codesal P, Russell JR, Molina-Cano JL, Moralejo M, Szűcs P, Gracia MP, Lasa JM, Casas AM (2008) Heading date QTL in a spring × winter barley cross evaluated in Mediterranean environments. Mol Breed 21:455–471

    Google Scholar 

  • Dai F, Nevo E, Wu D, Comadran J, Zhou M, Qiu L, Chen Z, Beiles A, Chen G, Zhang G (2012) Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci USA 109(42):16969–16973

    CAS  PubMed  Google Scholar 

  • Decousset L, Griffiths S, Dunford R, Pratchett N, Laurie D (2000) Development of STS markers closely linked to the Ppd-H1 photoperiod response gene of barley (Hordeum vulgare L.). Theor Appl Genet 101:1202–1206

    CAS  Google Scholar 

  • Distelfeld A, Li C, Dubcovsky J (2009) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12:178–184

    CAS  PubMed  Google Scholar 

  • Dubcovsky J, Chen C, Yan L (2005) Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley. Mol Breed 15:395–407

    CAS  Google Scholar 

  • Elliott RC, Betzner AS, Huttner E, Oakes MP, Tucker WQ, Gerentes D, Perez P, Smyth DR (1996) AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 8:155–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis R, Roberts E, Summerfield R, Cooper J (1988) Environmental control of flowering in barley (Hordeum vulgare L.). II. Rate of development as a function of temperature and photoperiod and its modification by low-temperature vernalization. Ann Bot 62:145–158

    Google Scholar 

  • Ellis RP, Forster BP, Robinson D, Handley L, Gordon DC, Russell JR, Powell W (2000) Wild barley: a source of genes for crop improvement in the 21st century? J Exp Bot 51:9–17

    CAS  PubMed  Google Scholar 

  • Faure S, Higgins J, Turner A, Laurie DA (2007) The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176:599–609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faure S, Turner AS, Gruszka D, Christodoulou V, Davis SJ, von Korff M, Laurie DA (2012) Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. Proc Natl Acad Sci 109:8328–8333

    CAS  PubMed  Google Scholar 

  • Fischer R (2007) Understanding the physiological basis of yield potential in wheat. J Agric Sci 145:99

    Google Scholar 

  • Fowler DB, Breton G, Limin AE, Mahfoozi S, Sarhan F (2001) Photoperiod and temperature interactions regulate low-temperature-induced gene expression in barley. Plant Physiol 127:1676–1681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Franckowiak J (2002) BGS 348, early maturity 5, Eam5. Barley Genet Newsl 32:109

    Google Scholar 

  • Franckowiak J, Konishi T (2002) Early maturity 6, Eam6. Barley Genet Newsl 32:86–87

    Google Scholar 

  • Franckowiak J, Lundqvist U, Konishi T, Gallagher L (1997) BGS 214, early maturity 8, eam8. Barley Genet Newsl 26:213–215

    Google Scholar 

  • Fu D, Szűcs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65

    CAS  PubMed  Google Scholar 

  • Gallagher L, Belhadri M, Zahour A (1987) Interrelationships among three major loci controlling heading date of spring barley when grown under short daylengths 1. Crop Sci 27:155–160

    Google Scholar 

  • Gallagher L, Soliman K, Vivar H (1991) Interactions among loci conferring photoperiod insensitivity for heading time in spring barley. Crop Sci 31:256–261

    Google Scholar 

  • Gilmour SJ, Zeevaart JA, Schwenen L, Graebe JE (1986) Gibberellin metabolism in cell-free extracts from spinach leaves in relation to photoperiod. Plant Physiol 82:190–195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395

    CAS  PubMed  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    CAS  PubMed  Google Scholar 

  • Hay R, Kirby E (1991) Convergence and synchrony—a review of the coordination of development in wheat. Crop Pasture Sci 42:661–700

    Google Scholar 

  • Hayes P, Liu B, Knapp S, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich S (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germ plasm. Theor Appl Genet 87:392–401

    CAS  PubMed  Google Scholar 

  • Hemming MN, Peacock WJ, Dennis ES, Trevaskis B (2008) Low-temperature and daylength cues are integrated to regulate FLOWERING LOCUS T in barley. Plant Physiol 147:355–366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hisamatsu T, King RW, Helliwell CA, Koshioka M (2005) The involvement of gibberellin 20-oxidase genes in phytochrome-regulated petiole elongation of arabidopsis. Plant Physiol 138:1106–1116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim A, Harrison M, Meinke H, Fan Y, Johnson P, Zhou M (2018) A regulator of early flowering in barley (Hordeum vulgare L.). PLoS ONE 13:e0200722

    PubMed  PubMed Central  Google Scholar 

  • Ivandic V, Hackett CA, Nevo E, Keith R, Thomas WTB, Forster BP (2002) Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time. Plant Mol Biol 48:511–527

    CAS  Google Scholar 

  • Jia Q, Zhang J, Westcott S, Zhang X-Q, Bellgard M, Lance R, Li C (2009) GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomics 9:255–262

    CAS  PubMed  Google Scholar 

  • Jia Q, Zhang X-Q, Westcott S, Broughton S, Cakir M, Yang J, Lance R, Li C (2011) Expression level of a gibberellin 20-oxidase gene is associated with multiple agronomic and quality traits in barley. Theor Appl Genet 122:1451–1460

    CAS  PubMed  Google Scholar 

  • Jia Q, Li C, Shang Y, Zhu J, Hua W, Wang J, Yang J, Zhang G (2015) Molecular characterization and functional analysis of barley semi-dwarf mutant Riso no. 9265. BMC Genom 16:927

    Google Scholar 

  • Jones H, Leigh FJ, Mackay I, Bower MA, Smith LM, Charles MP, Jones G, Jones MK, Brown TA, Powell W (2008) Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the Fertile Crescent. Mol Biol Evol 25:2211–2219

    CAS  PubMed  Google Scholar 

  • Karsai I, Mészáros K, Szücs P, Hayes P, Láng L, Bedö Z (1999) Effects of loci determining photoperiod sensitivity (Ppd-H1) and vernalization response (Sh2) on agronomic traits in the ‘Dicktoo’ × ‘Morex’ barley mapping population. Plant Breed 118:399–403

    Google Scholar 

  • Karsai I, Szűcs P, Mészáros K, Filichkina T, Hayes P, Skinner J, Láng L, Bedő Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative × winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110:1458–1466

    CAS  PubMed  Google Scholar 

  • Kernich GC, Slafer GA, Halloran GM (1995) Barley development as affected by rate of change of photoperiod. J Agric Sci 124:379–388

    Google Scholar 

  • Kjaer B, Jensen J, Giese H (1995) Quantitative trait loci for heading date and straw characters in barley. Genome 38:1098–1104

    CAS  PubMed  Google Scholar 

  • Klucher KM, Chow H, Reiser L, Fischer RL (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8:137–153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuczyńska A, Mikołajczak K, Ćwiek H (2014) Pleiotropic effects of the sdw1 locus in barley populations representing different rounds of recombination. Electron J Biotechnol 17:217–223

    Google Scholar 

  • Laurie DA, Pratchett N, Romero C, Simpson E, Snape JW (1993) Assignment of the denso dwarfing gene to the long arm of chromosome 3(3H) of barley by use of RFLP markers. Plant Breed 111:198–203

    Google Scholar 

  • Laurie D, Pratchett N, Snape J, Bezant J (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38:575–585

    CAS  PubMed  Google Scholar 

  • Li Z, Pinson SRM, Stansel JW, Park WD (1995) Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor Appl Genet 91:374–381

    CAS  PubMed  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649

    CAS  PubMed  Google Scholar 

  • Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok S, Wicker T et al (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433

    CAS  Google Scholar 

  • Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci 97:942–947

    CAS  PubMed  Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant, Cell Environ 33:670–685

    CAS  Google Scholar 

  • Nishida H, Ishihara D, Ishii M, Kaneko T, Kawahigashi H, Akashi Y, Saisho D, Tanaka K, Handa H, Takeda K, Kato K (2013) Phytochrome C is a key factor controlling long-day flowering in barley. Plant Physiol 163:804–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P (2014) Climate change 2014: synthesis report. Contribution of working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC

  • Powell W, Caligari P, Thomas W, Jinks J (1985) The effects of major genes on quantitatively varying characters in barley 2. The densoand daylength response loci. Heredity 54:349

    Google Scholar 

  • Ren X, Li C, Cakir M, Zhang W, Grime C, Zhang X-Q, Broughton S, Sun D, Lance R (2012) A quantitative trait locus for long photoperiod response mapped on chromosome 4H in barley. Mol Breed 30:1121–1130

    CAS  Google Scholar 

  • Roberts E, Summerfield R, Cooper J, Ellis R (1988) Environmental control of flowering in barley (Hordeum vulgare L.). I. Photoperiod limits to long-day responses, photoperiod-insensitive phases and effects of low-temperature and short-day vernalization. Ann Bot 62:127–144

    Google Scholar 

  • Sameri M, Takeda K, Komatsuda T (2006) Quantitative trait loci controlling agronomic traits in recombinant inbred lines from a cross of oriental-and occidental-type barley cultivars. Breed Sci 56:243–252

    Google Scholar 

  • Sameri M, Pourkheirandish M, Chen G, Tonooka T, Komatsuda T (2011) Detection of photoperiod responsive and non-responsive flowering time QTL in barley. Breed Sci 61:183–188

    Google Scholar 

  • Sasani S, Hemming MN, Oliver SN, Greenup A, Tavakkol-Afshari R, Mahfoozi S, Poustini K, Sharifi H-R, Dennis ES, Peacock WJ (2009) The influence of vernalization and daylength on expression of flowering-time genes in the shoot apex and leaves of barley (2009) Hordeum vulgare. J Exp Bot 60:2169–2178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sayed MA, Schumann H, Pillen K, Naz AA, Léon J (2012) AB-QTL analysis reveals new alleles associated to proline accumulation and leaf wilting under drought stress conditions in barley (Hordeum vulgare L.). BMC Genet 13:61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmalenbach I, Léon J, Pillen K (2009) Identification and verification of QTLs for agronomic traits using wild barley introgression lines. Theor Appl Genet 118:483–497

    CAS  PubMed  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szűcs P, Karsai I, von Zitzewitz J, Mészáros K, Cooper LLD, Gu YQ, Chen THH, Hayes PM, Skinner JS (2006) Positional relationships between photoperiod response QTL and photoreceptor and vernalization genes in barley. Theor Appl Genet 112:1277–1285

    PubMed  Google Scholar 

  • Takahashi R, Yasuda S (1971) Barley genetics II. In: Proceedings of the second international barley genetics symposium

  • Teplyakova S, Lebedeva M, Ivanova N, Horeva V, Voytsutskaya N, Kovaleva O, Potokina E (2017) Impact of the 7-bp deletion in HvGA20ox2 gene on agronomic important traits in barley (Hordeum vulgare L.). BMC Plant Biol 17:181

    PubMed  PubMed Central  Google Scholar 

  • Thomas W, Powell W, Swanston J (1991) The effects of major genes on quantitatively varying characters in barley. 4. The GPert and denso loci and quality characters. Heredity 66:381

    Google Scholar 

  • Trevaskis B, Hemming MN, Peacock WJ, Dennis ES (2006) HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol 140:1397–1405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trevaskis B, Tadege M, Hemming MN, Peacock WJ, Dennis ES, Sheldon C (2007) Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barley. Plant Physiol 143:225–235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda M, Takami S (1991) Changes of heading time and panicle weight in rice subjected to water stress during the early stage of panicle development. Jpn J Crop Sci 60:241–246

    Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2006) JoinMapH 4.0, Software for the calculation of geneticlinkage maps. Plant research international, Wageningen, The Netherlands

  • Van Ooijen J, Kyazma B (2009) MapQTL® 6, Software for the mapping of quantitative trait in experiment populations of diploid species. Wageningen, Kyazma BV

    Google Scholar 

  • Van Ooijen J, Kyazma B (2011) MapQTL 6: software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV, Wageningen

    Google Scholar 

  • von Korff M, Léon J, Pillen K (2010) Detection of epistatic interactions between exotic alleles introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 121:1455–1464

    Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    CAS  Google Scholar 

  • Wang G, Schmalenbach I, von Korff M, Léon J, Kilian B, Rode J, Pillen K (2010) Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines. Theor Appl Genet 120:1559–1574

    PubMed  PubMed Central  Google Scholar 

  • Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109:1677–1686

    CAS  PubMed  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci 103:19581–19586

    CAS  PubMed  Google Scholar 

  • Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR et al (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4:319–330

    CAS  PubMed  Google Scholar 

  • Yasuda S (1978) An earliness gene involved in Chinese native cultivars. Barley Genet Newsl 8:127–128

    Google Scholar 

  • Zhang X, Fan Y, Shabala S, Koutoulis A, Shabala L, Johnson P, Hu H, Zhou M (2017) A new major-effect QTL for waterlogging tolerance in wild barley (H. spontaneum). Theor Appl Genet 130:1559–1568

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present study is funded by the Grains Research and Development Corporation (GRDC) of Australia (UT00030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meixue Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Ahmed, I., Choudhury, S. et al. Wild barley shows a wider diversity in genes regulating heading date compared with cultivated barley. Euphytica 215, 75 (2019). https://doi.org/10.1007/s10681-019-2398-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-019-2398-1

Keywords

Navigation