Skip to main content
Log in

Breeding for mycorrhizal symbiosis: focus on disease resistance

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Modern plant breeding can no longer afford to ignore the interaction between plants and microbial key players. Increasing evidence suggests (i) that the expression of many plant traits (such as nutrient use efficiency or tolerances against biotic and abiotic stresses) is mediated by beneficial microorganisms and (ii) that there is an exploitable genetic base for the regulation of symbiotic relationships. Arbuscular mycorrhizal fungi (AMF) play a key role in many of these trait expressions. While much is known about their ability to mobilise nutrients (especially phosphorus), the complex mechanisms of AMF-mediated disease resistance have only started to become apparent within the past decade. Besides competition for root space and resources, AMF also have the ability to induce plant defence mechanisms. Jasmonic acid (JA) and salicylic acid (SA) appear to be the key phytohormones that regulate relevant signalling pathways. The resulting activation of defence-related compounds can occur locally or systemically, constitutively or primed. Genotype-dependent plant reactions have been demonstrated for mycorrhizal responsiveness (when based on biomass), but not much is known when it comes to genotypic variation for AMF-mediated disease resistance. However, a few studies have provided first valuable insights. It is proposed to (i) include disease resistance as a factor to expand the term mycorrhizal responsiveness and (ii) make use of an indicator called “mycorrhiza use efficiency” as an additional measure to determine an optimum cost-benefit ratio of the mycorrhiza symbiosis. In order to detect differences in the efficiency, genotype selection needs to occur in environments that do not suppress the plant–microbe interaction. Thus, the value of organic breeding programmes is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aira M, Gómez-Brandón M, Lazcano C et al (2010) Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol Biochem 42:2276–2281. doi:10.1016/j.soilbio.2010.08.029

    Article  CAS  Google Scholar 

  • Alvey S, Bagayoko M, Neumann G, Buerkert A (2001) Cereal/legume rotations affect chemical properties and biological activities in two West African soils. Plant Soil 231:45–54. doi:10.1023/A:1010386800937

    Article  CAS  Google Scholar 

  • An G-H, Kobayashi S, Enoki H et al (2009) How does arbuscular mycorrhizal colonization vary with host plant genotype? An example based on maize (Zea mays) germplasms. Plant Soil 327:441–453. doi:10.1007/s11104-009-0073-3

    Article  CAS  Google Scholar 

  • Azcón-Aguilar C, Barea J (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Azcón-Aguilar C, Jaizme-Vega MC, Calvet C (2002) The contribution of arbuscular mycorrhizal fungi to the control of soil-borne plant pathogens. Mycorrhizal Technol Agric 15:187–197. doi:10.1007/978-3-0348-8117-3_15

    Article  Google Scholar 

  • Baon JB, Smith SE, Alston AM (1993) Mycorrhizal responses of barley cultivars differing in P efficiency. Plant Soil 157:97–105

    Article  Google Scholar 

  • Benhamou N, Fortin JA, Hamel C et al (1994) Resistance responses of mycorrhizal Ri T-DNA-transformed carrot roots to infection by Fusarium oxysporum f.sp. chrysanthemi. Phytopathology 85:958–968

    Article  Google Scholar 

  • Bennett AE, Daniell TJ, White PJ (2013) Benefits of Breeding Crops for Yield Response to Soil Organisms. In: Molecular Microbial Ecology of the Rhizosphere, pp 17–27

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. doi:10.1016/j.tplants.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Opelt K, Zachow C et al (2006) The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol Ecol 56:250–261. doi:10.1111/j.1574-6941.2005.00025.x

    Article  CAS  PubMed  Google Scholar 

  • Bever JD, Richardson SC, Lawrence BM et al (2009) Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12:13–21. doi:10.1111/j.1461-0248.2008.01254.x

    Article  PubMed  Google Scholar 

  • Bodker L, Kjoller R, Rosendahl S (1998) Effect of phosphate and the arbuscular mycorrhizal fungus Glomus intraradices on disease severity of root rot of peas (Pisum sativum) caused by Aphanomyces euteiches. Mycorrhiza 8:169–174

    Article  CAS  Google Scholar 

  • Bødker L, Kjøller R, Kristensen K, Rosendahl S (2002) Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza 12:7–12. doi:10.1007/s00572-001-0139-4

    Article  PubMed  CAS  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744. doi:10.1126/science.1171647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buysens C, Dupré de Boulois H, Declerck S (2015) Do fungicides used to control Rhizoctonia solani impact the non-target arbuscular mycorrhizal fungus Rhizophagus irregularis? Mycorrhiza 25:277–288. doi:10.1007/s00572-014-0610-7

    Article  CAS  PubMed  Google Scholar 

  • Campos-Soriano L, García-Martínez J, San Segundo B (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol 13:579–592. doi:10.1111/J.1364-3703.2011.00773.X

    Article  CAS  PubMed  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11:1017–1028

    Article  CAS  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • de la Noval B, Pérez E, Martínez B et al (2007) Exogenous systemin has a contrasting effect on disease resistance in mycorrhizal tomato (Solanum lycopersicum) plants infected with necrotrophic or hemibiotrophic pathogens. Mycorrhiza 17:449–460. doi:10.1007/s00572-007-0122-9

    Article  PubMed  CAS  Google Scholar 

  • Delserone L, McCluskey K, Matthews D, Wanetten H (1999) Pisatin demethylation by fungal pathogens and nonpathogens of pea: association with pisatin tolerance and virulence. Physiol Mol Plant Pathol 55:317–326

    Article  CAS  Google Scholar 

  • Dodd JC, Jeffries P (1989) Effect of fungicides on three vesicular-arbuscular mycorrhizal fungi associated with winter wheat (Triticum aestivum L.). Biol Fertil Soils 7:120–128. doi:10.1007/BF00292569

    Article  CAS  Google Scholar 

  • Doornbos RF, van Loon LC, Bakker PAHM (2011) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32:227–243. doi:10.1007/s13593-011-0028-y

    Article  Google Scholar 

  • Feddermann N, Finlay R, Boller T, Elfstrand M (2010) Functional diversity in arbuscular mycorrhiza - the role of??gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecol 3:1–8. doi:10.1016/j.funeco.2009.07.003

    Article  Google Scholar 

  • Fiorilli V, Catoni M, Miozzi L et al (2009) Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytol 184:975–987. doi:10.1111/j.1469-8137.2009.03031.x

    Article  CAS  PubMed  Google Scholar 

  • Foo E, Reid JB (2012) Strigolactones: new physiological roles for an ancient signal. J Plant Growth Regul 32:429–442. doi:10.1007/s00344-012-9304-6

    Article  CAS  Google Scholar 

  • Foo E, Yoneyama K, Hugill CJ et al (2013) Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Mol Plant 6:76–87. doi:10.1093/mp/sss115

    Article  CAS  PubMed  Google Scholar 

  • Fritz M, Jakobsen I, Lyngkjaer MF et al (2006) Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16:413–419. doi:10.1007/s00572-006-0051-z

    Article  PubMed  Google Scholar 

  • Galván GA, Parádi I, Burger K et al (2009) Molecular diversity of arbuscular mycorrhizal fungi in onion roots from organic and conventional farming systems in the Netherlands. Mycorrhiza 19:317–328. doi:10.1007/s00572-009-0237-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Galván G, Kuyper TW, Burger K et al (2011) Genetic analysis of the interaction between Allium species and arbuscular mycorrhizal fungi. Theor Appl Genet 122:947–960. doi:10.1007/s00122-010-1501-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao X, Lu X, Wu M et al (2012) Co-inoculation with rhizobia and AMF inhibited soybean red crown rot: from field study to plant defense-related gene expression analysis. PLoS ONE 7:1–10. doi:10.1371/journal.pone.0033977

    Article  Google Scholar 

  • Garbeva P, van Elsas JD, van Veen JA et al (2007) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302:19–32. doi:10.1007/s11104-007-9432-0

    Article  CAS  Google Scholar 

  • Garrido JMG, Morcillo RJL, Rodríguez JAM et al (2010) Variations in the mycorrhization characteristics in roots of wild-type and ABA-deficient tomato are accompanied by specific transcriptomic alterations. Mol Plant Microbe Interact 23:651–664. doi:10.1094/MPMI-23-5-0651

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet M-N et al (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530. doi:10.1007/s00572-010-0333-3

    Article  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227. doi:10.1146/annurev.phyto.43.040204.135923

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB et al (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194. doi:10.1038/nature07271

    Article  CAS  PubMed  Google Scholar 

  • Gu Y-H, Mazzola M (2003) Modification of fluorescent pseudomonad community and control of apple replant disease induced in a wheat cultivar-specific manner. Appl Soil Ecol 24:57–72. doi:10.1016/S0929-1393(03)00066-0

    Article  Google Scholar 

  • Gutjahr C, Paszkowski U (2009) Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions. Mol Plant Microbe Interact MPMI 22:763–772. doi:10.1094/MPMI-22-7-0763

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A et al (2004) Trichoderma species–opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56. doi:10.1038/nrmicro797

    Article  CAS  PubMed  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157. doi:10.1002/ps.820

    Article  CAS  PubMed  Google Scholar 

  • Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110. doi:10.1016/j.phytochem.2006.09.025

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Dorrego A, Mestre-Parés J (2010) Evaluation of some fungicides on mycorrhizal symbiosis between two Glomus species from commercial inocula and Allium porrum L. seedlings. Spanish. J Agric Res 8:43. doi:10.5424/sjar/201008S1-1222

    Google Scholar 

  • Herrera-Medina MJ, Tamayo MI, Vierheilig H et al (2008) The jasmonic acid signalling pathway restricts the development of the arbuscular mycorrhizal association in tomato. J Plant Growth Regul 27:221–230. doi:10.1007/s00344-008-9049-4

    Article  CAS  Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Can J Bot 71:512–518. doi:10.1139/b93-056

    Article  Google Scholar 

  • Hildermann I, Messmer M, Dubois D et al (2010) Nutrient use efficiency and arbuscular mycorrhizal root colonisation of winter wheat cultivars in different farming systems of the DOK long-term trial. J Sci Food Agric n/a-n/a. doi:10.1002/jsfa.4048

    Google Scholar 

  • Hohmann P, Jones EE, Hill RA, Stewart A (2011) Understanding Trichoderma in the root system of Pinus radiata: associations between rhizosphere colonisation and growth promotion for commercially grown seedlings. Fungal Biol 115:759–767. doi:10.1016/j.funbio.2011.05.010

    Article  PubMed  Google Scholar 

  • Hohmann P, Jones EE, Hill RA, Stewart A (2012) Ecological studies of the bio-inoculant Trichoderma hamatum LU592 in the root system of Pinus radiata. FEMS Microbiol Ecol 80:709–721. doi:10.1111/j.1574-6941.2012.01340.x

    Article  CAS  PubMed  Google Scholar 

  • Hohmann P, Backes G, Thonar C, Messmer M (2016) Breeding for symbioses – Mycorrhizae as a case study. In: Kölliker R, Boller B (eds) Proceedings of the 20th EUCARPIA General Congress. Plant Breeding: the Art of Bringing Science to Life. Agroscope, Zurich

  • Horton MW, Bodenhausen N, Beilsmith K et al (2014) Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat Commun 5:5320. doi:10.1038/ncomms6320

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin H, Germida JJ, Walley FL (2013) Suppressive effects of seed-applied fungicides on arbuscular mycorrhizal fungi (AMF) differ with fungicide mode of action and AMF species. Appl Soil Ecol 72:22–30. doi:10.1016/j.apsoil.2013.05.013

    Article  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664. doi:10.1007/s10886-012-0134-6

    Article  CAS  PubMed  Google Scholar 

  • Kaeppler SM, Parke JL, Mueller SM et al (2000) Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Sci 40:358. doi:10.2135/cropsci2000.402358x

    Article  Google Scholar 

  • Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume—rhizobium mutualism. Nature 425:1095–1098

    Article  CAS  Google Scholar 

  • Klironomos J (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301. doi:10.1890/02-0413

    Article  Google Scholar 

  • Krishna KR, Shetty KG, Dart PJ, Andrews DJ (1985) Genotype dependent variation in mycorrhizal colonization and response to inoculation of pearl millet. Plant Soil 86:113–125. doi:10.1007/BF02185031

    Article  Google Scholar 

  • Lehmann A, Barto EK, Powell JR, Rillig MC (2012) Mycorrhizal responsiveness trends in annual crop plants and their wild relatives—a meta-analysis on studies from 1981 to 2010. Plant Soil 355:231–250. doi:10.1007/s11104-011-1095-1

    Article  CAS  Google Scholar 

  • Leiser WL, Olatoye MO, Rattunde HFW et al (2016) No need to breed for enhanced colonization by arbuscular mycorrhizal fungi to improve low-P adaptation of West African sorghums. Plant Soil 401:51–64. doi:10.1007/s11104-015-2437-1

    Article  CAS  Google Scholar 

  • Lendzemo V, Kuyper T, Matusova R et al (2007) Colonization by arbuscular mycorrhizal fungi of sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica. Plant Signal Behav 2:58–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Linderman R (1994) Role of VAM fungi in biocontrol. In: Pfleger F, Linderman R (eds) Mycorrhiza and plant health. APS Press, St. Paul, pp 1–26

    Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M et al (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544. doi:10.1111/j.1365-313X.2007.03069.x

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Raez JA, Verhage A, Fernandez I et al (2010) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot 61:2589–2601. doi:10.1093/jxb/erq089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Ráez JA, Flors V, García JM, Pozo MJ (2010) AM symbiosis alters phenolic acid content in tomato roots. Plant Signal Behav 5:1138–1140. doi:10.4161/psb.5.9.12659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • López-Ráez JA, Charnikhova T, Fernández I et al (2011) Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J Plant Physiol 168:294–297. doi:10.1016/j.jplph.2010.08.011

    Article  PubMed  CAS  Google Scholar 

  • Mäder P, Edenhofer S, Boller T et al (2000) Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biol Fertil Soils 31:150–156. doi:10.1007/s003740050638

    Article  Google Scholar 

  • Mark GL, Cassells AC (1996) Genotype-dependence in the interaction between Glomus fistulosum, Phytophthora fragariae and the wild strawberry (Fragaria vesca). Plant Soil 185:233–239. doi:10.1007/BF02257528

    Article  CAS  Google Scholar 

  • Merryweather J, Fitter A (1996) Phosphorus nutrition of an obligately mycorrhizal plant treated with the fungicide benomyl in the field. New Phytol 132:307–311

    Article  CAS  Google Scholar 

  • Merx C (2004) Kontrolle von Pythium ultimum an Erbsen durch arbusculäre Mykorrhiza und Kompost. Diploma thesis. University of Kassel

  • Meyer JB, Lutz MP, Frapolli M et al (2010) Interplay between wheat cultivars, biocontrol pseudomonads, and soil. Appl Environ Microbiol 76:6196–6204. doi:10.1128/AEM.00752-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micallef SA, Shiaris MP, Colón-Carmona A (2009) Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot 60:1729–1742. doi:10.1093/jxb/erp053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Møller K, Kristensen K, Yohalem D, Larsen J (2009) Biological management of gray mold in pot roses by co-inoculation of the biocontrol agent Ulocladium atrum and the mycorrhizal fungus Glomus mosseae. Biol Control 49:120–125. doi:10.1016/j.biocontrol.2009.01.015

    Article  Google Scholar 

  • Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant-microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739. doi:10.1093/jxb/eri205

    Article  CAS  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Mäder P et al (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583. doi:10.1007/s00442-003-1458-2

    Article  PubMed  Google Scholar 

  • Parke J, Kaeppler S (2000) Effects of genetic differences among crop species and cultivars upon the arbuscular mycorrhizal symbiosis. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Springer, Netherlands, pp 131–146

    Chapter  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775. doi:10.1038/nrmicro1987

    Article  CAS  PubMed  Google Scholar 

  • Paszkowski U (2006) Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol 9:364–370. doi:10.1016/j.pbi.2006.05.008

    Article  PubMed  Google Scholar 

  • Peiffer JA, Spor A, Koren O et al (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. PNAS 110:6548–6553. doi:10.1073/pnas.1302837110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799. doi:10.1038/nrmicro3109

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316. doi:10.1038/nchembio.164

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, de Jonge R, Berendsen RL (2016) The soil-borne supremacy. Trends Plant Sci 21:171–173. doi:10.1016/j.tplants.2016.01.018

    Article  CAS  PubMed  Google Scholar 

  • Powell CL, Clark GE, Verberne NL (1982) Growth response of four onion cultivars to several isolates of VA mycorrhizal fungi. New Zeal J Agric Res 25:465–470. doi:10.1080/00288233.1982.10417914

    Article  CAS  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398. doi:10.1016/j.pbi.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C, Dumas-Gaudot E, Barea JM (1999) β-1,3-Glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Sci 141:149–157. doi:10.1016/S0168-9452(98)00243-X

    Article  CAS  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E et al (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJMJ, Loon LC, Pieterse CMJ et al (2005) Jasmonates—signals in plant-microbe interactions. J Plant Growth Regul 23:211–222. doi:10.1007/s00344-004-0031-5

    Google Scholar 

  • Pozo M, Jung SC, López-Ráez JA, Azcón-Aguilar C (2010) Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: the role of plant defence mechanisms. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Netherlands, pp 193–207

    Chapter  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C et al (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361. doi:10.1007/s11104-008-9568-6

    Article  CAS  Google Scholar 

  • Rengel Z (2002) Breeding for better symbiosis. Plant Soil 245:147–162. doi:10.1023/A:1020692715291

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM, Roussel H, Gianinazzi S, Gianinazzi-Pearson V (1999) Defense genes are differentially induced by a mycorrhizal fungus and Rhizobium sp. in wild-type and symbiosis-defective pea genotypes. Mol Plant Microbe Interact 12:976–984. doi:10.1094/MPMI.1999.12.11.976

    Article  CAS  Google Scholar 

  • Ryan MH, Angus JF (2003) Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield. Plant Soil 250:225–239. doi:10.1023/A:1022839930134

    Article  CAS  Google Scholar 

  • Ryan MH, Norton RM, Kirkegaard JA et al (2002) Increasing mycorrhizal colonisation does not improve growth and nutrition of wheat on Vertosols in south-eastern Australia. Aust J Agric Res 53:1173. doi:10.1071/AR02005

    Article  CAS  Google Scholar 

  • Sawers RJH, Gebreselassie MN, Janos DP, Paszkowski U (2010) Characterizing variation in mycorrhiza effect among diverse plant varieties. Theor Appl Genet 120:1029–1039. doi:10.1007/s00122-009-1231-y

    Article  PubMed  Google Scholar 

  • Sikes BA (2010) When do arbuscular mycorhizal fungi protect plant roots from pathogens? Plant Signal Behav 5:763–765. doi:10.4161/psb.5.6.11776

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh UP, Sarma BK, Singh DP, Bahadur A (2002) Plant growth-promoting rhizobacteria-mediated induction of phenolics in pea (Pisum sativum) after infection with Erysiphe pisi. Curr Microbiol 44:396–400. doi:10.1007/s00284-001-0007-7

    Article  CAS  PubMed  Google Scholar 

  • Slezack S, Dumas-Gaudot E, Rosendahl S et al (1999) Endoproteolytic activities in pea roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and/or Aphanomyces euteiches in relation to bioprotection. New Phytol 142:517–529. doi:10.1046/j.1469-8137.1999.00421.x

    Article  Google Scholar 

  • Slezack S, Dumas-Gaudot E, Paynot M, Gianinazzi S (2000) Is a fully established arbuscular mycorrhizal symbiosis required for a bioprotection of Pisum sativum roots against Aphanomyces euteiches? Mol Plant Microbe Interact 13:238–241. doi:10.1094/MPMI.2000.13.2.238

    Article  CAS  PubMed  Google Scholar 

  • Smith KP, Goodman RM (1999) Host variation for interactions with beneficial plant-associated microbes. Annu Rev Phytopathol 37:476–491

    Article  Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13. doi:10.3852/11-229

    Article  PubMed  Google Scholar 

  • Splivallo R, Fischer U, Gobel C et al (2009) Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol 150:2018–2029. doi:10.1104/pp.109.141325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinkellner S, Hage-Ahmed K, García-Garrido JM et al (2012) A comparison of wild-type, old and modern tomato cultivars in the interaction with the arbuscular mycorrhizal fungus Glomus mosseae and the tomato pathogen Fusarium oxysporum f. sp. lycopersici. Mycorrhiza 22:189–194. doi:10.1007/s00572-011-0393-z

    Article  PubMed  Google Scholar 

  • Tawaraya K, Tokairin K, Wagatsuma T (2001) Dependence of Allium fistulosum cultivars on the arbuscular mycorrhizal fungus Glomus fasciculatum. Appl Soil Ecol 17:119–124. doi:10.1016/S0929-1393(01)00126-3

    Article  Google Scholar 

  • Thomma BPHJ, Nürnberger T, Joosten MHAJ (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15. doi:10.1105/tpc.110.082602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Ent S, Van Wees SCM, Pieterse CMJ (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588. doi:10.1016/j.phytochem.2009.06.009

    Article  PubMed  CAS  Google Scholar 

  • Van Rhijn P, Vanderleyden J (1995) The Rhizobium-plant symbiosis. Microbiol Rev 59:124–142

    Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M et al (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206. doi:10.1111/nph.13312

    Article  PubMed  Google Scholar 

  • Viebahn M, Veenman C, Wernars K et al (2005) Assessment of differences in ascomycete communities in the rhizosphere of field-grown wheat and potato. FEMS Microbiol Ecol 53:245–253. doi:10.1016/j.femsec.2004.12.014

    Article  CAS  PubMed  Google Scholar 

  • Vierheilig H, Steinkellner S, Khaosaad T, Garcia-Garrido JM (2008) The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of the AM symbiosis: One mechanism, two effects? Mycorrhiza State Art, Genet Mol Biol Eco-Function, Biotechnol Eco-Physiology, Struct Syst (Third Ed 307–320. doi: 10.1007/978-3-540-78826-3_15

  • Vierheilig H, Steinkellner S, Khaosaad T, Garcia-Garrido JM (2008b) The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of the AM symbiosis: one mechanism, two effects? Mycorrhiza. doi:10.1007/978-3-540-78826-3_15

    Google Scholar 

  • Wehner J, Antunes PM, Powell JR et al (2010) Plant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity? Pedobiologia (Jena) 53:197–201. doi:10.1016/j.pedobi.2009.10.002

    Article  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227. doi:10.1139/B04-082

    Article  Google Scholar 

  • Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil 321:409–430. doi:10.1007/s11104-008-9693-2

    Article  CAS  Google Scholar 

  • Yamada T, Hashimoto H, Shiraishi T, Hachiro O (1989) Suppression of pisatin, phenylalanine ammonia-lyase mRNA, and chalcone synthase mRNA accumulation by a putative pathogenicity factor from the fungus Mycosphaerella pinodes. Mol Plant Microbe Interact 2:256–261

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Swiss Federal Office of Agriculture for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Hohmann.

Additional information

This article is part of the Topical Collection on Plant Breeding: the Art of Bringing Science to Life. Highlights of the 20th EUCARPIA General Congress, Zurich, Switzerland, 29 August–1 September 2016

Edited by Roland Kölliker, Richard G. F. Visser, Achim Walter & Beat Boller

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hohmann, P., Messmer, M.M. Breeding for mycorrhizal symbiosis: focus on disease resistance. Euphytica 213, 113 (2017). https://doi.org/10.1007/s10681-017-1900-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1900-x

Keywords

Navigation