Skip to main content
Log in

Duplicated, deleted and translocated VRN2 genes in hexaploid wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The vernalization gene VRN-2 in winter wheat cultivars prevents flowering during the winter season, but repression can be removed by low temperature (vernalization) and winter wheat cultivars thus flower in the following spring. VRN-2 was cloned from diploid wheat but its orthologues have not been characterized or utilized in hexaploid common wheat. In this study, VRN-2 was isolated from winter wheat cultivars Jagger and 2174 that were also used to generate a RIL population for genetic mapping. Neither VRN-A2 in genome A nor VRN-D2 in genome D showed allelic variation. Two duplicated copies of VRN-B2 were isolated from 2174, but no VRN-B2 was isolated from Jagger, indicating that Jagger carried a null VRN-B2 allele. Mapping of the VRN-B2 gene indicated that both VRN-B2 copies in 2174 were tightly linked with SNPs on chromosome 4BL, indicating that the duplicated VRN-B2 genes were arranged in a tandem pattern at the same locus. The Jagger null VRN-B2 allele had no significant effect on flowering time in the segregating population. Surprisingly, identical sequences of VRN-B2 were also found in contig sequences from chromosomes 4BS, 2BS, and 5DL in IWGSC Chinese Spring genome sequences. These findings suggest that multiple events of duplication, deletion, and translocation involving VRN-B2 may have occurred in various hexaploid wheat cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bonnin I, Rousset M, Madur D, Sourdille P, Dupuits C, Brunel D, Goldringer T (2008) FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor Appl Genet 116:383–394

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh C, Chao S, Wang S, Huang BE et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Y, Carver BF, Wang S, Zhang F, Yan L (2009) Genetic loci associated with stem elongation and winter dormancy release in wheat. Theor Appl Genet 118:881–889

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Carver BF, Wang S, Cao S, Yan L (2010) Genetic regulation of developmental phases in winter wheat. Mol Breed 26:573–582

    Article  Google Scholar 

  • Conley EJ, Nduati V, Gonzalez-Hernandez JL, Mesfin A et al (2004) A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene-rich islands and colinearity with rice. Genetics 168:625–637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Devos KM, Millan T, Gale MD (1993) Comparative RFLP maps of homoeologous group 2 chromosomes of wheat, rye and barley. Theor Appl Genet 85:784–792

    CAS  PubMed  Google Scholar 

  • Devos KM, Dubcovsky J, Dvorak J, Chinoy CN, Gale MD (1995) Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet 91:282–288

    Article  CAS  PubMed  Google Scholar 

  • Distelfeld A, Tranquilli G, Li C, Yan L, Dubcovsky J (2009) Genetic and molecular characterization of the VRN2 loci in tetraploid wheat. Plant Physiol 149:245–257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dubcovsky J, Galvez AF, Dvorak J (1994) Comparison of the genetic organization of the early salt stress response gene system in salt-tolerant Lophopyrum elongatum and salt-sensitive wheat. Theor Appl Genet 87:957–964

    Article  CAS  PubMed  Google Scholar 

  • Dubcovsky J, Luo MC, Zhong GY, Bransteitter R et al (1996) Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143:983–999

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dubcovsky J, Lijavetzky D, Appendino L, Tranquilli G (1998) Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor Appl Genet 97:968–975

    Article  CAS  Google Scholar 

  • Dubcovsky J, Loukoianov A, Fu D, Valarik M et al (2006) Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol 60:469–480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dvorak J, McGuire PE, Mendlinger S (1984) Inferred chromosome morphology of the ancestral genome of Triticum. Plant Syst Evol 144:209–220

    Article  Google Scholar 

  • Endo TR, Gill BS (1984) Somatic karyotype, heterochromatin distribution, and nature of chromosome differentiation in common wheat, Triticum aestivum L. em. Thell. Chromosoma 89:361–369

    Article  Google Scholar 

  • Friebe B, Jiang J, Knott DR, Gill BS (1994) Compensation indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci 34:400–404

    Article  Google Scholar 

  • Fu D, Szucs P, Yan L, Helguera M et al (2005) Large deletions in the first intron of the VRN-1vernalization gene are associated with spring growth habit in barley and polyploidy wheat. Mol Genet Genomics 273:54–65

    Article  CAS  PubMed  Google Scholar 

  • Hao M, Luo J, Zhang L, Yuan Z, Zheng Y, Zhang H, Liu D (2013) In situ hybridization analysis indicates that 4AL–5AL–7BS translocation preceded subspecies differentiation of Triticum turgidum. Genome 56:303–305

    Article  CAS  PubMed  Google Scholar 

  • Larson SR, Kishii M, Tsujimoto H, Qi L, Chen P, Lazo GR, Jensen KB, Wang RRC (2012) Leymus EST linkage maps identify 4NsL-5NsL reciprocal translocation, wheat-Leymus chromosome introgressions, and functionally important gene loci. Theor Appl Genet 124:189–206

    Article  CAS  PubMed  Google Scholar 

  • Li G, Yu M, Fang T, Cao S, Carver BF, Yan L (2013) Vernalization requirement duration in winter wheat is controlled by TaVRN-A1 at the protein level. Plant J 76:742–753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma J, Stiller J, Wei Y, Zheng Y et al (2014) Extensive pericentric rearrangements in the bread wheat (Triticum aestivum L.) genotype “Chinese Spring” revealed from chromosome shotgun sequence data. Genome Biol Evol 6:3039–3048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mickelson-Young L, Endo TR, Gill BS (1995) A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes. Theor Appl Genet 90:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Miftahudin KR, Ross K, Ma XF, Mahmoud AA et al (2004) Analysis of expressed sequence tag loci on wheat chromosome group 4. Genetics 168:651–663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nelson JC, Sorrells ME, Van Deynze AE, Lu YH et al (1995) Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shitsukawa N, Ikari C, Shimada S, Kitagawa S et al (2007) The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet Syst 82:167–170

    Article  CAS  PubMed  Google Scholar 

  • Takahashi R, Yasuda S (1971) Genetics of earliness and growth habit in barley. In: Nilan RA (ed) Proceedings of the 2nd international Barley genetics symposium. Washington State University Press, WA, pp 388–408

  • The International Wheat Genome Sequencing, Consortium (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:6194

    Google Scholar 

  • Tranquilli G, Dubcovsky J (2000) Epistatic interactions between vernalization genes Vrn-Am 1 and Vrn-Am2 in diploid wheat. J Hered 91:304–306

    Article  CAS  PubMed  Google Scholar 

  • Trevaskis B, Hemming MN, Peacock WJ, Dennis ES (2006) HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol 140:1397–1405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang SW, Carver B, Yan L (2009) Genetic loci in the photoperiod pathway interactively modulate reproductive development of winter wheat. Theor Appl Genet 118:1339–1349

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M et al (2003) Positional cloning of wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan L, Helguera M, Kato K, Fukuyama S et al (2004a) Allelic variation at the VRN1 promoter region in polyploid wheat. Theor Appl Genet 109:1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G et al (2004b) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A et al (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshida T, Nishida H, Zhu J, Nitcher R et al (2010) Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat. Theor Appl Genet 120:543–552

    Article  CAS  PubMed  Google Scholar 

  • Zhang XK, Xia XC, Xiao YG, Dubcovsky J, He ZH (2008) Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1 and Vrn-B3 in Chinese common wheat cultivars and their association with growth habit. Crop Sci 48:458–470

    Article  CAS  Google Scholar 

  • Zhu X, Tan CT, Cao S, Yan L (2011) Molecular differentiation of null alleles at ZCCT-1 genes on the A, B, and D genomes of hexaploid wheat. Mol Breed 27:501–510

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially funded by the Oklahoma Agricultural Experiment Station and the Oklahoma Wheat Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuling Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C., Yan, L. Duplicated, deleted and translocated VRN2 genes in hexaploid wheat. Euphytica 208, 277–284 (2016). https://doi.org/10.1007/s10681-015-1589-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1589-7

Keywords

Navigation