Skip to main content
Log in

Screening of pea germplasm for resistance to powdery mildew

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Powdery mildew caused by Erysiphe pisi DC results heavy losses in the yield and quality of pods and seeds of pea crop. Germplasm comprising 701 accessions of garden and field pea originating from 60 countries were screened for powdery mildew resistance under natural epiphytotic conditions and 64 accessions found resistant in field screening for 2 years at one location were further screened both in field at two locations and artificially in laboratory to four isolates. The information was also obtained on the amount of genetic diversity and agronomic superiority in resistant accessions. Fifty-seven accessions showed resistant reaction for 3 consecutive years in field screening but only 14 accessions originating from 10 countries showed resistant reaction in laboratory screening against the four most prevalent isolates of E. pisi collected from different places in the area of experiment. Germplasm lines showed both complete and incomplete levels of resistance and variable reactions to different isolates. There was sufficient genetic diversity and agronomic superiority in the resistant accessions e.g. EC598655, EC598878, EC598704, IC278261, and IC218988, which may serve as useful genetic material to plant breeders for breeding pea varieties for powdery mildew resistance and high yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad Z, Ghafoor A, Iqbal SM (2001) Yield potential of local and exotic germplasm with special reference to powdery mildew disease in peas [Pisum sativum (L.)]. Pak J Bot 33:251–255

    Google Scholar 

  • Ahmad G, Mudasir KR, Shikha SMK (2010) Evaluation of genetic diversity in pea (Pisum sativum L) using RAPD analysis. Genet Eng Biotechnol 16:1–5

    Google Scholar 

  • Ali SM, Sharma B, Ambrose MJ (1994) Current status and future strategy in breeding pea to improve resistance to biotic and abiotic stresses. Euphytica 73:115–126

    Article  Google Scholar 

  • Amurrio JM, de Ron AM, Escribano MR (1993) Evaluation of Pisum sativum landraces from the northwest of Iberian Peninsula and their breeding value. Euphytica 66:1–10

    Article  Google Scholar 

  • Azmat MA, Nawab NN, Niaz S, Rashid A, Mahmood K, Khan AA, Khan HS (2010) Single recessive gene controls powdery mildew resistance in pea. Int J Veg Sci 16(3):278–286

    Article  Google Scholar 

  • Bala B, Sharma N, Sharma RK (2011) Cost and return structure for the promising enterprise of off-season vegetables in Himachal Pradesh. Agric Econ Res Rev 24(1):141–148

    Google Scholar 

  • Banyal DK, Tyagi PD (1998) Comparison of screening techniques for evaluation of resistance among pea genotypes for powdery mildew. In: Ghabroo SK, Bhagat RM, Kapoor AC (eds) Natural resource management for sustainable hill agriculture, vol II. HPKV, Palampur, pp 340–346

  • Banyal DK, Singh A, Tyagi PD (2005) Pathogenic variability in Erysiphe pisi causing pea powdery mildew. Himachal J Agri Res 32:87–92

    Google Scholar 

  • Bing D, Gan Y, Warkentin T (2011) Yields in mixtures of resistant and susceptible field pea cultivars infested with powdery mildew—defining thresholds for a possible strategy for preserving resistance. Can J Plant Sci 91(5):873–880

    Article  Google Scholar 

  • Burton GW (1952) Quantitative inheritance in grasses. Proc Intern Grassland Cong 1:277–283

    Google Scholar 

  • Ceyhan E (2003) Determination of some agricultural characters and their heredity through line x tester method in pea parents and crosses. Selcuk Univ, Graduate School Nat Appl Sci p 103

    Google Scholar 

  • Ceyhan E, Ali A, Karada S (2008) Line X tester analysis in pea (Pisum sativum L.): identification of superior parents for seed yield and its components. Afr J Biotechnol 7(16):2810–2817

    CAS  Google Scholar 

  • Cockerham C (1961) Implications of genetic variances in a hybrid breeding programme. Crop Sci 1:47–52

    Article  Google Scholar 

  • Duke JA (1981) Hand book of legumes of world economic importance. Plenums Press, New York, pp 199–265

  • Federer WT (1956) Augmented (or hoonuiaku) designs. Hawaii Plant Record 55:191–208

    Google Scholar 

  • Fondevilla S, Carver TLWQ, Moreno MT, Rubiales D (2006) Macroscopic and histological characterization of gene er1 and er2 for powdery mildew resistance in pea. Eur J Plant Pathol 115:309–321

    Article  Google Scholar 

  • Fondevilla S, Carver TLW, Moreno MT, Rubiales D (2007) Identification and characterisation of sources of resistance to Erysiphe pisi Syd. in Pisum spp. Plant Breed 126:113–119

    Article  Google Scholar 

  • Ghafoor A, Ahmad Z, Anwar R (2005) Genetic diversity in Pisum sativum and a strategy for indigenous biodiversity conservation. Pak J Bot 37:71–77

    Google Scholar 

  • Gritton ET (1980) Field pea hybridization of crop plants. In: Fehr WR, Hadley HH (eds) American society of agronomy. Crop Science Society of America, Inc., Wisconsin, pp 347–356

    Google Scholar 

  • Heringa RJ, Van Norel A, Tazelaar MF (1969) Resistance to powdery mildew (Erysiphe polygoni D.C.) in peas (Pisum sativum L.). Euphytica 18:163–169

    Google Scholar 

  • Javid A, Ghafoor A, Anwar R (2002) Evaluation of local and exotic pea germplasm for vegetable and dry grain traits. Pak J Bot 34(4):419–427

    Google Scholar 

  • Jing R, Vershinin A, Grzebyta J, Shaw P, Smýkal P, Marshall D, Ambrose MJ, Noel TH, Ellis FAJ (2010) The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evol Biol 10:44. doi:10.1186/1471-2148-10-44

    Article  PubMed  Google Scholar 

  • Johnson HW, Robinson HP, Comstoc RE (1955) Estimation of genetic and environmental variability in soybeans. Agron J 47:314–318

    Article  Google Scholar 

  • Kalia P, Sharma SK (1988) Biochemical genetics of powdery mildew resistance in pea. Theor Appl Genet 76:795–799

    Article  CAS  Google Scholar 

  • Katoch V, Sharma SD, Pathania S, Banayal DK, Sharma SK, Rathour R (2010) Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group III. Mol Breed 25(2):229–237

    Article  CAS  Google Scholar 

  • Keneni G, Jarso M, Wolabu T, Dino G (2005) Extent and pattern of genetic diversity for morpho-agronomic traits in Ethiopian highland pulse landraces: 1. Field pea (Pisum sativum L.). Genet Res Crop Evol 52:539–549

    Article  Google Scholar 

  • Khan IA, Malik BA (1989) Grain and biological yield association in chickpea. Sarhad J Agric Res 5:373–375

    Google Scholar 

  • Kosterin OE, Bogdanova VS (2008) Relationship of wild and cultivated forms of Pisum as inferred from an analysis of three markers, of the plastid, mitochondrial and nuclear genomes. Gen Res Crop Evol 55:735–755

    Article  CAS  Google Scholar 

  • Kumar K (2008) Variability, heritability and genetic advance in pea (Pisum sativum L.). Int J Plant Sci 3(1):211–212

    Google Scholar 

  • Kumar H, Singh RB (1981) Genetic analysis of adult plant resistance to powdery mildew in pea (Pisum sativum L.). Euphytica 30:147–151

    Article  Google Scholar 

  • Liu SM, O’Brien L, Moore SG (2003) A single recessive gene confers effective resistance to powdery mildew of field pea grown in northern New South Wales. Aust J Exp Agric 43:373–378

    Article  Google Scholar 

  • Lush JL (1940) Intrusive collection of regression of offspring on dams as a method of estimating heritability of characters. Proc Am Soc Anim Prod 33:293–301

    Google Scholar 

  • Maxted N, Ambrose M (2001) Peas (Pisum L.). In: Maxted N, Bennett SJ (eds) Plant genetic resources of legumes in the Mediterranean. Kluwer Academic Publishers, Amsterdam, pp 81–190

  • Mehmet AA, Ceyham E (2006) Correlation and genetic analysis of pod characterisation in pea. Asian J Plant Sci 5(1):1–4

    Article  Google Scholar 

  • Mehrani P (2002) Genetic diversity in local and exotic pea (Pisum sativum L.) germplasm for morphological traits and SDS-PAGE markers. M.Phil, Dissertation, Quaid-e-Azam University, Islamabad

  • Munjal RL, Chenulu VV, Hora TS (1963) Assessment of losses due to powdery mildew (Erysiphe polygoni) on pea. Indian Phytopathol 19:260–267

    Google Scholar 

  • Nisar M, Ghafoor A, Khan MR, Qureshi AS (2006) Screening of Pisum Sativum L. Germplasm against Erysiphe pisi syd. Acta Bilogia Cracoviensia Series Botanica 48(2):33–37

  • Pal AB, Brahmappa HS, Rawal RD, Ullasa A (1980) Field resistance of pea germplasm to powdery mildew (Erysiphe polygoni) and rust (Uromyces fabae). Plant Dis 64:1085–1086

    Article  Google Scholar 

  • Rana JC, Gupta VP (1993a) Genetic analysis of some physiological traits in pea. Indian J Pulse Res 6(1):38–44

    Google Scholar 

  • Rana JC, Gupta VP (1993b) Response to selection in early generation in pea. Indian J Genet 53(3):269–272

    Google Scholar 

  • Rana JC, Gupta VP (1994) Genetic analysis of green pod yield and phenological traits in pea. Legume Res 17(2):105–108

    Google Scholar 

  • Rana JC, Gupta VP (1995) Gene action studies in pea. J Hill Res 8(1):75–78

    Google Scholar 

  • Rana JC, Singh A, Sharma Y, Pradheep K, Mendiratta N (2010) Dynamics of plant bioresources in western himalayan region of India—watershed based case experiment. Curr Sci 98(2):192–203

    Google Scholar 

  • Robinson HF (1966) Quantitative genetics in relation to breeding of the centennial of Mendalism. Indian J Genet 26:171–187

    Google Scholar 

  • Saxena JK, Tripathi RM, Srivastava RL (1975) Powdery mildew resistance in pea (Pisum sativum L.). Curr Sci 44:746

    Google Scholar 

  • Schroeder WT, Providenti R (1965) Breakdown of the er resistance to powdery mildew in Pisum sativum. Phytopathology 55:1075

    Google Scholar 

  • Sharma N (1992) Evaluation of varietal susceptibility in pea to Erysiphe polygoni. Ann Appl Biol 120:110–111

    Google Scholar 

  • Singh MN, Singh RB (1990) Genetic analysis of some quantitative characters in pea. Indian J Pulses Res 3:127–131

    Google Scholar 

  • Singh SB, Tripathi BK (1980) Genetic divergence in pea. Indian J Genet Plant Breed 2:389–393

    Google Scholar 

  • Singh L, Narsinghani VG, Kotasthane SR, Tiwari AS (1978) Yield losses caused by powdery mildew in different varieties of peas. Indian J Agric Sci 48:86–88

    Google Scholar 

  • Singh RB, Singh MN, Singh UP, Singh RM (1983) Inheritance of resistance to powdery mildew in pea and its use in breeding. Indian J Agric Sci 53:855–856

    Google Scholar 

  • Singh A, Singh S, Babu JDB (2011) Heritability, character association and path analysis in early segregating populations of field pea. Int J Plant Breed Genet 5(1):86–92

    Article  Google Scholar 

  • Sivasubramanian S, Madhavamenon P (1978) Genotypic and phenotypic variability in rice. Madras Agric J 60:1093–1096

    Google Scholar 

  • Smýkal P, Horácèk J, Dostálová R, Hýbl M (2008) Variety discrimination in pea (Pisum sativum L.) by molecular, biochemical and morphological markers. J Appl Genet 49:155–166

    Article  PubMed  Google Scholar 

  • Thakur BR, Kapoor AS, Jamwal RS (1996) Varietal resistance of pea to powdery mildew in dry temperature zone of Himachal Pradesh. Indian Phytopathol 49:92–93

    Google Scholar 

  • Thomas J, Kenyon D (2004) Evaluating resistance to downy mildew (Peronospora viciae) in field peas (Pisum sativum L.) and field beans (Vicia fabae L.). In: AEP (ed) Proceedings of 5th European conference on grain legumes, Dijon, pp 81–82

  • Tiwari KR, Penner GA, Warkentin TD (1997a) Inheritance of powdery mildew resistance in pea. Can J Plant Sci 77:307–310

    Article  Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD, Rashid KY (1997b) Pathogenic variation in Erysiphe pisi, the casual organism of powdery mildew of pea. Can J Plant Pathol 19:267–271

    Article  Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD (1999) Identification of AFLP markers for powdery mildew resistance gene er2 in pea. Pisum Genet 31:27–29

    Google Scholar 

  • Tiwari SK, Kumar R, Singh HL, Katiyar RP (2004) Genetic diversity analysis in pea (Pisum Sativum L.) Indian. J Agric Res 38(1):60–64

    Google Scholar 

  • Vaid A, Tyagi PD (1997) Genetics of powdery mildew resistance in pea. Euphytica 96:203–206

    Article  Google Scholar 

  • Vershinin AV, Alnutt TR, Knox MR, Ambrose MR, Ellis THN (2003) Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution and domestication. Mol Biol Evol 20:2067–2075

    Article  PubMed  CAS  Google Scholar 

  • Warkentin TD, Rashid KY, Zimmer RC (1995) Effectiveness of a detached leaf assay for determination of the reaction of pea plant to powdery mildew. Can J Plant Pathol 17:87–89

    Article  Google Scholar 

  • Warkentin TD, Rashid KY, Xue AG (1996) Fungicidal control of powdery mildew in field pea. Can J Plant Sci 76:933–935

    Article  CAS  Google Scholar 

  • Yadav VK, Kumar S, Panwar RK (2007) Measurement of genetic dissimilarity in field pea (Pisum sativum L.) genotypes using RAPD markers. Genet Res Crop Evol 54(6):1285–1289

    Google Scholar 

  • Zong XX, Guan JP, Wang SM, Liu QC (2008) Genetic diversity among Chinese pea (Pisum sativum L.) landraces as revealed by SSR markers. Acta Agron Sinica 34:1330–1338

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Rana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rana, J.C., Banyal, D.K., Sharma, K.D. et al. Screening of pea germplasm for resistance to powdery mildew. Euphytica 189, 271–282 (2013). https://doi.org/10.1007/s10681-012-0798-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0798-6

Keywords

Navigation