Skip to main content
Log in

Morphology and SSR fingerprinting of newly developed Cynara cardunculus genotypes exploitable as ornamentals

  • Published:
Euphytica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The species Cynara cardunculus includes the globe artichoke (var. scolymus), the cultivated cardoon (var. altilis) and the wild cardoon (var. sylvestris). The three taxa are sexually compatible and originate fertile F 1 progenies, which, given the high heterozygosity of the species, are highly segregating. We report the characterization of two F 1 populations, one bred from a cross between globe artichoke and cultivated cardoon, and the other between globe artichoke and wild cardoon. Both populations featured a wide array of phenotypes in relation to several traits, and some of the newly developed genotypes are of interest for the ornamental market. The two populations were genotyped at 50 microsatellite (SSR) loci: in the globe artichoke × wild cardoon and globe artichoke × cultivated cardoon progenies 116 and 97 alleles were respectively detected. SSR pattern scores were used to produce an UPGMA dendrogram and a PCoA plot. A set of nine SSR loci, evenly dispersed across the genome, was shown to be sufficient to unambiguously identify each segregant. The molecular fingerprinting is useful for establishing the true to type correspondence of propagative materials in nurseries and ensures the effective correspondence between the real and the declared identity of a clone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acquadro A, Portis E, Lanteri S (2003) Isolation of microsatellite loci in artichoke (Cynara cardunculus L. var. scolymus). Mol Ecol Notes 3:37–39

    Article  CAS  Google Scholar 

  • Acquadro A, Portis E, Albertini E, Lanteri S (2005a) M-AFLP-based protocol for microsatellite loci isolation in Cynara cardunculus L. (Asteraceae). Mol Ecol Notes 5:272–274

    Article  CAS  Google Scholar 

  • Acquadro A, Portis E, Lee D, Donini P, Lanteri S (2005b) Development and characterization of microsatellite markers in Cynara cardunculus L. Genome 48:217–225

    Article  PubMed  CAS  Google Scholar 

  • Acquadro A, Lanteri S, Scaglione D, Arens P, Vosman B, Portis E (2009) Genetic mapping and annotation of genomic microsatellites isolated from globe artichoke. Theor Appl Genet 118(8):1573–1587

    Article  PubMed  CAS  Google Scholar 

  • Acquadro A, Papanice M, Lanteri S, Bottalico G, Portis E, Campanale A, Finetti-Sialer M, Mascia T, Sumerano P, Gallitelli D (2010) Production and fingerprinting of virus-free clones in a reflowering globe artichoke. Plant Cell Tiss Organ Cult 100(3):329–337

    Article  CAS  Google Scholar 

  • Anido F, Firpo I, Garcia S, Cointry E (1998) Estimation of genetic parameters for yield traits in globe artichoke (Cynara scolymus L.). Euphytica 103:61–66

    Article  Google Scholar 

  • Barba M, Di Lernia G, Babes G, Citrulli F (2004) Produzione e conservazione di germoplasma di carciofo di tipo romanesco esente da virus. Italus Hortus 11:5–10

    Google Scholar 

  • Basnitzki J, Zohary D (1994) Breeding of seed planted artichoke. Plant Breed Rev 12:253–269

    Google Scholar 

  • Cocker H (1967) Il carciofo pianta ornamentale. In: Medica M (ed) I International Congress on Artichoke. Minerva Medica, Bari, pp 313–317

    Google Scholar 

  • Collard B, Jahufer M, Brouwer J, Pang E (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Comino C, Lanteri S, Portis E, Acquadro A, Romani A, Hehn A, Larbat R, Bourgaud F (2007) Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L. BMC Plant Biol 7:14

    Article  PubMed  Google Scholar 

  • Comino C, Hehn A, Moglia A, Menin B, Bourgaud F, Lanteri S, Portis E (2009) The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway. BMC Plant Biol 9:30

    Article  PubMed  Google Scholar 

  • Cravero V, Picardi L, Cointry E (2005) An approach for understanding the heredity of two quality traits (head color and tightness) in globe artichoke (Cynara scolymus L.). Genet Mol Biol 28:431–434

    Article  Google Scholar 

  • Foti S, Mauromicale G, Raccuia S, Fallico B, Fanella F, Maccarone E (1999) Possible alternative utilization of Cynara spp. I. Biomass, grain yield and chemical composition of grain. Ind Crop Prod 10:219–228

    Article  CAS  Google Scholar 

  • Foury C (1969) Étude de la biologie florale de l’artichaut (Cynara scolymus L.). Application a la sélection 2 partie. Étude des descendances obtenues en fécondation contrôlée. Ann Amélior Plantes 19:23–52

    Google Scholar 

  • Foury C, Aubert S (1977) Observation préliminares sur la présence et la répartition de pigments anthocyaniques dans un mutant d’artichaut (Cynara scolymus L.) à fleurs blanches. Ann Amélior Plantes 27(5):603–612

    CAS  Google Scholar 

  • Holm L, Loeschcke V, Bendixen C (2001) Elucidation of the molecular basis of a null allele in a rainbow trout microsatellite. Mar Biotechnol 3:555–560

    Article  PubMed  CAS  Google Scholar 

  • Ierna A, Mauromicale G (2010) Cynara cardunculus L. genotypes as a crop for energy purposes in a Mediterranean environment. Biomass Bioenerg 34(5):754–760

    Article  Google Scholar 

  • Jackson JA, Matthews D (2000) Modified inter-simple sequence repeat PCR protocol for use in conjunction with the LI-COR gene ImagIR(2) DNA analyzer. Biotechniques 28:914–916

    PubMed  CAS  Google Scholar 

  • Jones A, Stockwell C, Walker D, Avise J (1998) The molecular basis of a microsatellite null allele from the white sands pupfish. J Hered 89:339–342

    Article  CAS  Google Scholar 

  • Lanteri S, Portis E (2008) Globe Artichoke and Cardoon. In: Springer (ed) Vegetables I, vol 1. Springer, New York, pp 49–74

    Chapter  Google Scholar 

  • Lanteri S, Di Leo I, Ledda L, Mameli M, Portis E (2001) RAPD variation within and among populations of globe artichoke cultivar ‘Spinoso sardo’. Plant Breeding 120:243–246

    Article  CAS  Google Scholar 

  • Lanteri S, Acquadro A, Saba E, Portis E (2004a) Molecular fingerprinting and evaluation of genetic distances among selected clones of globe artichoke (Cynara cardunculus L. var. scolymus L.). J Hortic Sci Biotech 79:863–870

    CAS  Google Scholar 

  • Lanteri S, Saba E, Cadinu M, Mallica G, Baghino L, Portis E (2004b) Amplified fragment length polymorphism for genetic diversity assessment in globe artichoke. Theor Appl Genet 108:1534–1544

    Article  PubMed  CAS  Google Scholar 

  • Lanteri S, Acquadro A, Comino C, Mauro R, Mauromicale G, Portis E (2006) A first linkage map of globe artichoke (Cynara cardunculus var. scolymus L.) based on AFLP, S-SAP, M-AFLP and microsatellite markers. Theor Appl Genet 112:1532–1542

    Article  PubMed  CAS  Google Scholar 

  • Lattanzio V, Kroon PA, Linsalata V, Cardinali A (2009) Globe artichoke: a functional food and source of nutraceutical ingredients. J Funct Food 1:131–144

    Article  CAS  Google Scholar 

  • Lombardo S, Pandino G, Mauromicale G, Knödler M, Carle R, Schieber M (2010) Influence of genotype, harvest time and plant part on polyphenolic composition of globe artichoke [Cynara cardunculus var. scolymus (L.) Fiori]. Food Chem 119:1175–1181

    Article  CAS  Google Scholar 

  • Maccarone E, Fallico B, Fanella F, Mauromicale G, Raccuia S, Foti S (1999) Possible alternative utilization of Cynara spp. II. Chemical characterization of their grain oil. Ind Crop Prod 10(1999):229–237

    Article  CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Mauro R, Portis E, Acquadro A, Lombardo S, Mauromicale G, Lanteri S (2009) Genetic diversity of globe artichoke landraces from Sicilian small-holdings: implications for evolution and domestication of the species. Conserv Genet 10:431–440

    Article  Google Scholar 

  • Mauro R, Lombardo S, Longo AMG, Pandino G, Mauromicale G (2011) New cropping designs of globe artichoke for industrial use. Ital J Agron 6:e8

    Google Scholar 

  • Mauromicale G, Ierna A (2000) Panorama varietale e miglioramento genetico del carciofo. Informatore agrario 26:39–45

    Google Scholar 

  • Menin B, Comino C, Moglia A, Dolzhenko Y, Portis E, Lanteri S (2010) Identification and mapping of genes related to caffeoylquinic acid synthesis in Cynara cardunculus L. Plant Sci 178:338–347

    Article  Google Scholar 

  • Pandino G, Courts F, Lombardo S, Mauromicale G, Williamson G (2010) Caffeoylquinic acids and flavonoids in the immature inflorescence of globe artichoke, wild cardoon, and cultivated cardoon. J Agric Food Chem 58:1026–1031

    Article  PubMed  CAS  Google Scholar 

  • Papanice MA, Campanale A, Bottalico G, Sumerano P, Gallitelli D (2004) Production of virus-free artichoke germplasm cv Brindisino (Cynara scolymus L.; Apulia). Italus Hortus 11(5):11–15

    Google Scholar 

  • Peakall R, Smouse P (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pekkinen M, Varvio S, Kulju K, Karkkainen H, Smolander S, Vihera-Aarnio A, Koski V, Sillanpaa M (2005) Linkage map of birch, Betula pendula Roth, based on microsatellites and amplified fragment length polymorphisms. Genome 48:619–625

    Article  PubMed  CAS  Google Scholar 

  • Pemberton J, Slate J, Bancroft D, Barrett J (1995) Non-amplifying alleles at microsatellite loci—a caution for parentage and population studies. Mol Ecol 4:249–252

    Article  PubMed  CAS  Google Scholar 

  • Pochard E, Foury C, Chambonet D (1969) Il miglioramento genetico del carciofo. Proceedings the 1 Congresso Internazionale sul carciofo–Bari–Italy, pp 117-155

  • Porceddu E, Dellacecca V, Bianco V (1976) Classificazione numerica di cultivar di carciofo. Proceedings II International Congress on Artichoke, Ed Minerva Medica, Torino pp 1105-1119

  • Portis E, Barchi L, Acquadro A, Macua J, Lanteri S (2005a) Genetic diversity assessment in cultivated cardoon by AFLP (Amplified Fragment Length Polymorphism) and microsatellite markers. Plant Breed 124:299–304

    Article  CAS  Google Scholar 

  • Portis E, Acquadro A, Comino C, Mauromicale G, Saba E, Lanteri S (2005b) Genetic structure of island populations of wild cardoon [Cynara cardunculus L. var. sylvestris (Lamk) Fiori] detected by AFLPs and SSRs. Plant Sci 169:199–210

    Article  CAS  Google Scholar 

  • Portis E, Mauromicale G, Barchi L, Mauro R, Lanteri S (2005c) Population structure and genetic variation in autochthonous globe artichoke germplasm from Sicily Island. Plant Sci 168:1591–1598

    Article  CAS  Google Scholar 

  • Portis E, Mauromicale G, Mauro R, Acquadro A, Scaglione D, Lanteri S (2009) Construction of a reference molecular linkage map of globe artichoke (Cynara cardunculus var. scolymus). Theor Appl Genet 120(1):59–70

    Article  PubMed  CAS  Google Scholar 

  • Rodzen J, May B (2002) Inheritance of microsatellite loci in the white sturgeon (Acipenser transmontanus). Genome 45:1064–1076

    Article  PubMed  CAS  Google Scholar 

  • Rohlf FJ (1998) NTSYSpc Version 2.0: User Guide. Applied Biostatistics Inc

  • Shaw P, Turan C, Wright J, O’Connell M, Carvalho G (1999) Microsatellite DNA analysis of population structure in Atlantic herring (Clupea harengus), with direct comparison to allozyme and mtDNA RFLP analyses. Heredity 83:490–499

    Article  PubMed  CAS  Google Scholar 

  • Smouse P, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573

    Article  PubMed  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy—the principles and practice of numerical classification. W, H. Freeman, San Francisco

    Google Scholar 

  • Van Oosterhout C, Hutchinson W, Wills D, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, vol 4. Wiley, New York, pp 535–538

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezio Portis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanteri, S., Portis, E., Acquadro, A. et al. Morphology and SSR fingerprinting of newly developed Cynara cardunculus genotypes exploitable as ornamentals. Euphytica 184, 311–321 (2012). https://doi.org/10.1007/s10681-011-0509-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0509-8

Keywords

Navigation