Skip to main content
Log in

Quantitative trait loci for temperature-sensitive resistance to Puccinia striiformis f. sp. tritici in wheat cultivar Flinor

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Stripe (yellow) rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriks. (Pst), is an important disease of wheat (Triticum aestivum L.) globally. Use of host resistance is an important strategy to manage the disease. The cultivar Flinor has temperature-sensitive resistance to stripe rust. To map quantitative trait loci (QTLs) for these temperature-sensitive resistances, Flinor was crossed with susceptible cultivar Ming Xian 169. The seedlings of the parents, and F1, F3 progeny were screened against Chinese yellow rust race CYR32 in controlled-temperature growth chambers under different temperature regimes. Genetic analysis confirmed two genes for temperature-sensitive stripe rust resistance. A linkage map of SSR markers was constructed using 130 F3 families derived from the cross. Two temperature-sensitive resistance QTLs were detected on chromosome 5B, designated QYr-tem-5B.1 and QYr-tem-5B.2, respectively, and are separated by a genetic distance of over 50 cM. The loci contributed 33.12 and 37.33% of the total phenotypic variation for infection type, respectively, and up to 70.45% collectively. Favorable alleles of these two QTLs came from Flinor. These two QTLs are temperature-sensitive resistance loci and different from previously reported QTLs for resistance to stripe rust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bariana HS, McIntosh RA (1995) Genetics of adult-plant stripe rust resistance in four Australian wheats and the French cultivar ‘Hybride-de-Bersee’. Plant Breed 114:485–491

    Article  Google Scholar 

  • Bariana HS, Hayden MJ, Ahmed NU, Bell JA, Sharp PJ, McIntosh RA (2001) Mapping of durable adult-plant and seedling resistances to stripe rust and stem rust diseases in wheat. Aust J Agric Res 52:1247–1255

    Article  CAS  Google Scholar 

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  • Basten JC, Wang S, Gaffney P, Zeng ZB (2003) Windows QTL Cartographer, version 2.0, Statistical Genetics. North Carolina State University, Raleigh, N.C, U.S.A

    Google Scholar 

  • Brown JF, Sharp EL (1969) Interactions of minor host genes for resistance to Puccinia striiformis with changing temperature regimes. Phytopathology 59:999–1001

    Google Scholar 

  • Carter A, Chen XM, Garland-Campbell K, Kidwell KK (2009) Identifying QTL for high-temperature adult-plant resistance to stripe rust (Puccinia striiformis f. sp. tritici) in the spring wheat (Triticum aestivum L.) cultivar ‘Louise’. Theor Appl Genet 119:1119–1128

    Article  PubMed  Google Scholar 

  • Chen XM (2005) Epidemiology and control of stripe rust on wheat. Can J Plant Pathol 27:314–337

    Article  Google Scholar 

  • Chen XM, Jones SS, Line RF (1995) Chromosomal location of genes for stripe rust resistance in spring wheat cultivars Compair, Fielder, Lee, and Lemhi and interactions of an euploid wheat with races of Puccinia striiformsi. Phytopathology 85:375–381

    Article  Google Scholar 

  • Chen XM, Jones SS, Line RF (1996) Chromosomal location of genes for resistance to Puccinia striiformis in seven wheat cultivars with resistance genes at the Yr3 and Yr4 loci. Phytopathology 86:1228–1233

    Article  CAS  Google Scholar 

  • Gerechter-Amitai ZK, Van Silfhout CH (1989) Race-specificity of temperature-sensitive genes for resistance to Puccinia striiformis in Triticum dicoccoides. Euphytica 43:7–14

    Article  Google Scholar 

  • Johnson R (1984) A critical analysis of durable resistance. Annu Rev Phytopathol 22:309–330

    Article  Google Scholar 

  • Johnson R (1988) Durable resistance to yellow (stripe) rust in wheat and its implications in plant breeding. In: Simmonds NW, Rajaram S (eds) Breeding strategies for resistance to the rusts of wheat. CIMMYT, Mexico, pp 63–75

    Google Scholar 

  • Johnson R, Law CN (1975) Genetic control of durable resistance to yellow rust (Puccinia striiformis) in the wheat cultivar Hybride de Bersee. Ann Appl Biol 81:385–391

    Article  Google Scholar 

  • Kaul K, Shaner G (1989) Effect of temperature on adult-plant resistance to leaf rust in wheat. Phytopathology 79:391–394

    Article  Google Scholar 

  • Krupinsky JM, Sharp EL (1978) Additive resistance in wheat to Puccinia striiformis. Phytopathology 68:1795–1799

    Article  Google Scholar 

  • Krupinsky JM, Sharp EL (1979) Reselection for improved resistance to wheat stripe rust. Phytopathology 69:400–404

    Article  Google Scholar 

  • Lin F, Chen XM (2007) Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet 114:1277–1287

    Article  PubMed  CAS  Google Scholar 

  • Lin F, Chen XM (2009) Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar Express. Theor Appl Genet 118:631–642

    Article  PubMed  CAS  Google Scholar 

  • Line RF (2002) Stripe rust of wheat and barley in North America: a retrospective historical review. Annu Rev Phytopathol 40:75–118

    Article  PubMed  CAS  Google Scholar 

  • Line RF, Qayoum A (1992) Virulence aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968–87. U. S. Dep. Agric. Tech. Bull. No. 1788

  • Lu Y, Lan C, Liang S, Zhou X, Liu D, Zhou G, Lu Q, Jing J, Wang M, Xia X, He Z (2009) QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor Appl Genet 119:1349–1359

    Article  PubMed  CAS  Google Scholar 

  • Mallard S, Gaudet D, Aldeia A, Abelard C, Besnard AL, Sourdille P, Dedryver F (2005) Genetic analysis of durable resistance to yellow rust in bread wheat. Theor Appl Genet 110:1401–1409

    Article  PubMed  CAS  Google Scholar 

  • Milus EA, Line RF (1986a) Gene action for inheritance of durable, high-temperature, adult-plant resistance to stripe rust in wheat. Phytopathology 76:425–441

    Google Scholar 

  • Milus EA, Line RF (1986b) Number of genes controlling high-temperature, adult-plant resistance to stripe rust in wheat. Phytopathology 76:93–96

    Article  Google Scholar 

  • Navabi A, Tewari JP, Singh RP, McCallum B, Laroche A, Briggs KG (2005) Inheritance and QTL analysis of durable resistance to stripe and leaf rusts in an Australian cultivar, Triticum aestivum ‘Cook’. Genome 48:97–106

    Article  PubMed  CAS  Google Scholar 

  • Park RF, Ash GJ, Rees RG (1992) Effects of temperature on the response of some Australian wheat cultivars to Puccinia striiformis f.sp. tritici. Mycol Res 3:166–170

    Article  Google Scholar 

  • Qayoum A, Line RF (1985) High-temperature, adult-plant resistance to stripe rust of wheat. Phytopathology 75:1121–1125

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76

    Article  CAS  Google Scholar 

  • Santra DK, Chen XM, Santra M, Campbell KG, Kidwell KK (2008) Identification and mapping QTL for high-temperature adult-plant resistance to stripe rust in winter wheat (Triticum aestivum L.) cultivar Stephens. Theor Appl Genet 117:793–802

    Article  PubMed  CAS  Google Scholar 

  • Sharp EL, Fuchs E (1982) Additive genes in wheat for resistance to stripe (yellow) rust (Puccinia striiformis Westend.). Crop Prot 1:182–189

    Article  Google Scholar 

  • Singh RP, Huerta Espino J, William HM (2005) Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turk J Agric For 29:121–127

    CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Stubbs RW (1988) Pathogenicity analysis of yellow (stripe) rust of wheat and its significance in a global context. In: Simmonds NW, Rajaram S (eds) Breeding strategies for resistance to the rusts of wheat. CIMMYT, Mexico, pp 23–38

    Google Scholar 

  • Suenaga K, Singh RP, Huerta-Espino J, William HM (2003) Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf and stripe rust resistance in bread wheat. Phytopathology 93:881–890

    Article  PubMed  CAS  Google Scholar 

  • Tong S, Lin R, He Y, Xu S (2006) Genetic analysis of major and minor gene(s) resistant to stripe rust in resource wheat cultivars Holdfast and Flinor. Scientia Agricultura Sinica 39:2243–2249

    Google Scholar 

  • Uauy C, Brevis JC, Chen XM, Khan I, Jackson L, Chicaiza O, Distelfeld A, Fahima T, Dubcovsky J (2005) High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet 112(1):97–105

    Article  PubMed  CAS  Google Scholar 

  • Wan A, Zhao Z, Chen X, He Z, Jin S, Jia Q, Yao G, Yang J, Wang B, Li G, Bi Y, Yuan Z (2004) Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis 88:896–904

    Article  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2004) Windows QTL Cartographer v2.0. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

Download references

Acknowledgments

This research was supported by China Postdoctoral Science Foundation (No. 20080430052 and 200902156), the National Basic Research and Development Program (2011CB100403), and the National Natural Science Fund for Young Scholars of China (30700521). The authors are grateful to the various cooperators for supplying rust isolates and cultivars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, J., Zuo, L.L., Zhang, Z.Y. et al. Quantitative trait loci for temperature-sensitive resistance to Puccinia striiformis f. sp. tritici in wheat cultivar Flinor. Euphytica 178, 321–329 (2011). https://doi.org/10.1007/s10681-010-0291-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0291-z

Keywords

Navigation