Skip to main content
Log in

Variation for bioactive compounds in ají (Capsicum baccatum L.) and rocoto (C. pubescens R. & P.) and implications for breeding

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Ají (Capsicum baccatum L.) and rocoto (C. pubescens R. & P.) are two Capsicum pepper species native to the Andean region that have not been subjected to intensive breeding. However, the increase in its demand in European markets has sparked the development of breeding programmes for adaptation to Mediterranean climates, which include breeding for higher levels of bioactive compounds. We have studied the composition of red and yellow carotenoids (C R and C Y, respectively), ascorbic acid (AA), and total phenolics (TP) in 34 accessions of Capsicum, including 23 of C. baccatum, eight of C. pubescens, and 3 controls of C. annuum, which were grown in Spain both under greenhouse (GH) and open field (OF) conditions. The results show that in both growing conditions C. baccatum presents a considerable variation for most of the traits studied, with several accessions having similar or higher levels than C. annuum for the compounds studied. This indicates that C. baccatum is an important source of antioxidant compounds with nutritional value. On the contrary, C. pubescens had a poor performance, with low levels for all the compounds studied, and a poor adaptation to the conditions of Mediterranean climates. When considering the GH or OF growing cycles separately, heritability values were high (>0.75) for C R, C Y and AA, and moderate (0.42 for GH and 0.62 for OF) for TP. The existence of an important genotype × environment interaction resulted in lower levels for heritability when considering both growing cycles together, although the values were still high for C R and AA (>0.6). Positive significant genotypic correlations among all the traits studied were found, except for TP with C R and AA in the OF cycle. This information indicates that there are good prospects for developing C. baccatum varieties with higher levels of bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AA:

Ascorbic acid content

C R :

Red carotenoids

C Y :

Yellow carotenoids

GH:

Greenhouse

H :

Broad-sense heritability

OF:

Open field

TP:

Total phenolics

References

  • Bosland PW, Votava EJ (2000) Peppers: vegetable and spice capsicum. CABI Publishing, New York

    Google Scholar 

  • Bouvier F, Backhaus RA, Camara B (1998) Induction and control of chromoplast-specific carotenoid genes by oxidative stress. J Biol Chem 273:30651–30659. doi:10.1074/jbc.273.46.30651

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury AR, Sharma S, Mandal S, Goswami A, Mukhopadhyay A, Majumder HK (2002) Luteolin, an emerging anti-cancer flavonoid, poisons eukaryotic DNA topoisomerase I. Biochem J 366:653–661. doi:10.1042/BJ20020098

    Article  PubMed  CAS  Google Scholar 

  • Dabholkar AR (1992) Elements of biometrical genetics. Longman, Essex

    Google Scholar 

  • Davey MW, Van Montagu M, Inze D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IFF, Strain JJ, Favell D, Fletcher J (2000) Plant l-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 89:825–860. doi:10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO;2-6

    Article  Google Scholar 

  • Davies JN, Hobson GE (1981) The constituents of tomato fruit-the influence of environment, nutrition, and genotype. CRC Crit Rev Food Sci Nutr 15:205–280

    Article  CAS  Google Scholar 

  • DeWitt D, Bosland PW (1996) Peppers of the world: an identification guide. Ten Speed Press, Berkeley

    Google Scholar 

  • Dumas Y, Dadomo M, Lucca GD, Grolier P, di Lucca G (2003) Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J Sci Food Agric 83:369–382. doi:10.1002/jsfa.1370

    Article  CAS  Google Scholar 

  • Esbaugh WH, Guttman SI, McLeod M (1983) The origin and evolution of domesticated Capsicum species. J Ethnobiol 3:49–54

    Google Scholar 

  • Eshbaugh WH (1993) Peppers: history and exploitation of a serendipitous new crop discovery. In: Janick J, Simon JE (eds) New crops. Wiley, New York, pp 132–139

    Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, Essex

    Google Scholar 

  • Hanson WD (1989) Standard errors of heritability and expected selection response. Crop Sci 29:1561–1562

    Article  Google Scholar 

  • Hanson PM, Yang RY, Lin S, Tsou SCS, Lee TC, Wu J, Shieh J, Gniffke P, Ledesma D (2004) Variation for antioxidant activity and antioxidants in a subset of AVRDC: The World Vegetable Center Capsicum core collection. Plant Genet Resour 2:153–156. doi:10.1079/PGR200444

    Article  CAS  Google Scholar 

  • Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147–151. doi:10.1016/S1360-1385(98)01200-X

    Article  Google Scholar 

  • Hébert D, Fauré S, Olivieri I (1994) Genetic, phenotypic and environmental correlations in black medic, Medicago lupulina L., grown in three different environments. Theor Appl Genet 88:604–613. doi:10.1007/BF01240925

    Article  Google Scholar 

  • Hornero-Méndez D, Mínguez-Mosquera MI (2001) Rapid spectrophotometric determination of red and yellow isochromic carotenoid fractions in paprika and red pepper oleoresins. J Agric Food Chem 49:3584–3588. doi:10.1021/jf010400l

    Article  PubMed  CAS  Google Scholar 

  • Hornero-Méndez D, Gómez-Ladrón de Guevara R, Mínguez-Mosquera MI (2000) Carotenoid biosynthesis in five red pepper (Capsicum annuum L.) cultivars during ripening. Cultivar selection for breeding. J Agric Food Chem 48:3857–3864. doi:10.1021/jf991020r

    Article  PubMed  CAS  Google Scholar 

  • Howard LR, Talcott ST, Brenes CH, Villalon B (2000) Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J Agric Food Chem 48:1713–1720. doi:10.1021/jf990916t

    Article  PubMed  CAS  Google Scholar 

  • Huang YT, Hwang JJ, Lee PP, Ke FC, Huang JH, Huang CJ, Kandaswami C, Middleton E, Lee MT (1999) Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br J Pharmacol 128:999–1010. doi:10.1038/sj.bjp.0702879

    Article  PubMed  CAS  Google Scholar 

  • Hunt GM, Baker EA (1980) Phenolic constituents of tomato fruit cuticles. Phytochemistry 19:1415–1419

    CAS  Google Scholar 

  • Jackson P (1994) Genetic relationships between attributes in sugarcane clones closely related to Saccharum spontaneum. Euphytica 79:101–108. doi:10.1007/BF00023581

    Article  Google Scholar 

  • Kritchevsky SB (1999) β-Carotene, carotenoids and the prevention of coronary heart disease. J Nutr 129:5–8

    PubMed  CAS  Google Scholar 

  • Latham MC (2002) Human nutrition in the developing world. FAO collection 29. FAO, Rome

    Google Scholar 

  • Lee Y, Howard LR, Villalón B (1995) Flavonoids and antioxidant activity of fresh pepper (Capsicum annuum) cultivars. J Food Sci 60:473–476. doi:10.1111/j.1365-2621.1995.tb09806.x

    Article  CAS  Google Scholar 

  • Libby P, Aikawa M (2002) Vitamin C, collagen, and cracks in the plaque. Circulation 105:1396–1398. doi:10.1161/01.CIR.0000012513.58079.EA

    Article  PubMed  Google Scholar 

  • Lutsenko EA, Carcamo JM, Golde DW (2002) Vitamin C prevents DNA mutation induced by oxidative stress. J Biol Chem 277:16895–16899. doi:10.1074/jbc.M201151200

    Article  PubMed  CAS  Google Scholar 

  • Marín A, Ferreres F, Tomás-Barberán FA, Gil MI (2004) Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum L.). J Agric Food Chem 52:3861–3869. doi:10.1021/jf0497915

    Article  PubMed  CAS  Google Scholar 

  • Matsufuji H, Nakamura H, Chino M, Takeda M (1998) Antioxidant activity of capsanthin and the fatty acid esters in paprika (Capsicum annuum). J Agric Food Chem 46:3468–3472. doi:10.1021/jf980200i

    Article  CAS  Google Scholar 

  • Mínguez-Mosquera MI, Hornero-Méndez D (1993) Separation and quantification of the carotenoid pigments in red peppers (Capsicum annuum L.), paprika, and oleoresin by reversed-phase HPLC. J Agric Food Chem 41:1616–1640. doi:10.1021/jf00034a018

    Article  Google Scholar 

  • Nuez F, Gil-Ortega R, Costa J (2003) El cultivo de pimientos, chiles y ajíes. Mundi-Prensa, Madrid

    Google Scholar 

  • Nyquist WE (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322. doi:10.1080/07352689109382313

    Article  Google Scholar 

  • Popovski S, Paran I (2000) Molecular genetics of the y locus in pepper: its relation to capsanthin-capsorrubin synthase and to fruit color. Theor Appl Genet 101:86–89. doi:10.1007/s001220051453

    Article  Google Scholar 

  • Rice-Evans CA, Miller NJ, Papaganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 4:152–159. doi:10.1016/S1360-1385(97)01018-2

    Article  Google Scholar 

  • Rodríguez-Burruezo A, Nuez F (2006) Mejora de la calidad en el pimiento. In: Llácer G, Díez MJ, Carrillo JM, Badenes ML (eds) Mejora genética de la calidad de plantas. Servicio de Publicaciones de la Universidad Politécnica de Valencia, Valencia, pp 361–381

    Google Scholar 

  • Rossel JB, Wilson IW, Pogson BJ (2002) Global changes in gene expression in response to high light in Arabidopsis. Plant Physiol 130:1109–1120. doi:10.1104/pp.005595

    Article  PubMed  CAS  Google Scholar 

  • Russo VW, Howard LR (2002) Carotenoids in pungent and non-pungent peppers at various developmental stages grown in the field and glasshouse. J Sci Food Agric 82:615–624. doi:10.1002/jsfa.1099

    Article  CAS  Google Scholar 

  • Sarry JE, Montillet JL, Sauvaire Y, Havaux M (1994) The protective function of the xanthophylls cycle in photosynthesis. FEBS Lett 353:147–150. doi:10.1016/0014-5793(94)01028-5

    Article  PubMed  CAS  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Smith H (1973) Regulatory mechanisms in the photocontrol of flavonoid biosynthesis. In: Milborrow BV (ed) Biosynthesis and its control in plants. Academic Press, New York, pp 303–320

    Google Scholar 

  • Spargias K, Alexopoulos E, Kyrzopoulos S, Iacovis P, Greenwood DC, Manginas A, Voudris V, Pavlides G, Buller CE, Kremastinos D, Cokkinos DV (2004) Ascorbic acid prevents contrast-mediated nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. Circulation 110:2837–2842. doi:10.1161/01.CIR.0000146396.19081.73

    Article  PubMed  CAS  Google Scholar 

  • Szeto YT, Tomlinson B, Benzie IFF (2002) Total antioxidant and ascorbic acid content of fresh fruits and vegetables: implications for dietary planning and food preservation. Br J Nutr 87:55–59. doi:10.1079/BJN2001483

    Article  PubMed  CAS  Google Scholar 

  • Thorup TA, Tanyolac B, Livingstone KD, Popovski S, Paran I, Jahn M (2000) Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc Natl Acad Sci USA 97:11192–11197. doi:10.1073/pnas.97.21.11192

    Article  PubMed  CAS  Google Scholar 

  • Toor RK, Savage GP, Lister CE (2006) Seasonal variations in the antioxidant composition of greenhose grown tomatoes. J Food Compost Anal 19:1–10. doi:10.1016/j.jfca.2004.11.008

    Article  CAS  Google Scholar 

  • Törmäkangas L, Vuorela S, Saario E, Leinonen M, Saikku P, Vuorela H (2005) In vivo treatment of acute Chlamydia pneumoniae infection with the flavonoids quercetin and luteolin and an alkyl gallate, octyl gallate, in a mouse model. Biochem Pharmacol 70:1222–1230. doi:10.1016/j.bcp.2005.07.012

    Article  PubMed  CAS  Google Scholar 

  • Vanderslice JT, Higgs DJ, Hayes JM, Block G (1990) Ascorbic acid and dehydroascorbic acid content of food-as-eaten. J Food Compost Anal 3:105–118. doi:10.1016/0889-1575(90)90018-H

    Article  CAS  Google Scholar 

  • Verhoeyen ME, Bovy A, Collins G, Muir S, Robinson S, de Vos CHR, Colliver S (2002) Increasing antioxidant levels in tomatoes through modification of the flavonoid biosynthetic pathway. J Exp Bot 53:2099–2106. doi:10.1093/jxb/erf044

    Article  PubMed  CAS  Google Scholar 

  • Wall MM, Wadell CA, Bosland PW (2001) Variation in β-carotene and total carotenoid content in fruits of Capsicum. HortScience 36:746–749

    CAS  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369. doi:10.1038/30728

    Article  PubMed  CAS  Google Scholar 

  • Wricke G, Weber W (1986) Quantitative genetics and selection in plant breeding. De Gruyter, Berlin

    Google Scholar 

  • You WC, Zhang L, Chang YS, Liu WD, Ma JL, Li JY, Jin ML, Hu YR, Yang CS, Xu GW (2000) Gastric displasia and gastric cancer: Helicobacter pylori, serum vitamin C, and other risk factors. J Natl Cancer Inst 92:1607–1612. doi:10.1093/jnci/92.19.1607

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Estela Moreno Peris for her assistance in the analysis of samples. This work has been partially financed by Instituto Nacional de Investigación y Tecnología Agroalimentaria (RF2004-00004-00-00) and Generalitat Valenciana-Conselleria d′Educació (GVPRE/2008/309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Prohens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Burruezo, A., Prohens, J., Raigón, M.D. et al. Variation for bioactive compounds in ají (Capsicum baccatum L.) and rocoto (C. pubescens R. & P.) and implications for breeding. Euphytica 170, 169–181 (2009). https://doi.org/10.1007/s10681-009-9916-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-009-9916-5

Keywords

Navigation