Skip to main content
Log in

Gene flow from transgenic wheat and barley under field conditions

  • Original Article
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

In this study the frequency and distance of gene flow from transgenic wheat (Triticum aestivum) and barley (Hordeum vulgare) to non-transgenic wheat and barley crops was investigated under local field conditions. Trials were conducted in the Australian Capital Territory (ACT) and in South Australia (SA). Gene flow from transgenic wheat was confirmed at frequencies of 0.012% and 0.0037% in the ACT and SA, respectively. In both trials gene flow occurred over distances of less than 12 m. Gene flow was also detected from transgenic barley at a frequency of 0.005%, over a distance of less than 12 m. The results show that under Australian field conditions, gene flow occurs at extremely low frequencies and over very short distances. Physical separation of transgenic and non-transgenic cereal crops by greater than 12 m should ensure that contamination of adjacent non-transgenic cereal crops remains less than 0.02%, well below the level permitted under Australian regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Ghani AH, Parzies HK, Omary A, Geiger HH (2004) Estimating the outcrossing rate of barley landraces and wild barley populations collected from ecologically different regions of Jordan. Theor Appl Genet 109:588–595

    Article  PubMed  Google Scholar 

  • Bartsch D, Schuphan I (2002) Lessons we can learn from ecological biosafety research. J Biotechnol 98:71–77

    Article  PubMed  CAS  Google Scholar 

  • Basri Z (2000) Genetic transformation of wheat (Triticum aestivum L.). PhD thesis, University of Adelaide, Australia

  • Beri SM, Anand SC (1971) Factors affecting pollen shedding capacity in wheat. Euphytica 20:327–332

    Article  Google Scholar 

  • Bitzer MJ, Patterson FL (1967) Pollen dispersal and cross-pollination} of soft red winter wheat (Triticum aestivum L.). Crop Sci 7:482–484

    Article  Google Scholar 

  • de Vries AP (1971) Flowering biology of wheat particularly in view of hybrid seed production: a review. Euphytica 20:152–170

    Article  Google Scholar 

  • D'Souza VL (1970) Investigations concerning the suitability of wheat as a pollen-donor for cross pollination by wind as compared to rye, Triticale and Secalotricum. Zeitschrift für Pflanzenzüchtung 63:246–269

    Google Scholar 

  • Gustafson DI, Horak MJ, Rempel CB, Metz SG, Gigax DR, Hucl P (2005) An empirical model for pollen-mediated gene flow in wheat. Crop Sci 45:1286–1294

    Article  Google Scholar 

  • Hamblin J, Barton J, Sanders M, Higgins TJV (2005) Factors affecting the potential for gene flow from transgenic crops of Lupinus angustifolius L. in Western Australia. Australian Journal of Agricultural Research 56:613–618

    Article  Google Scholar 

  • Lelley J (1966) Observation on the biology of fertilization with regard to seed production in hybrid wheat. Genetic and Breeding Research (Der Züchter) 36:314–317

    Article  Google Scholar 

  • Matus-Cadiz MA, Hucl P, Horak MJ, Blomquist LK (2004) Gene flow in wheat at the field scale. Crop Sci 44:718–727

    Article  Google Scholar 

  • Messeguer J (2003) Gene flow assessment in transgenic plants. Plant Cell Tissue and Organ Culture 73:201–212

    Article  CAS  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:S111–130

    Google Scholar 

  • Parzies HK, Spoor W, Ennos RA (2000) Outcrossing rates of barley landraces from Syria. Plant Breeding 119:520–522

    Article  Google Scholar 

  • Percival J (1921) The wheat plant. Duckworth and Co., London

    Google Scholar 

  • Ritala A, Nuutila AM, Aikasalo R, Kauppinen V, Tammisola J (2002) Measuring gene flow in the cultivation of transgenic barley. Crop Sci 42:278–285

    Article  PubMed  CAS  Google Scholar 

  • Wagner DB, Allard RW (1991) Pollen migration in predominantly self-fertilizing plants – barley. J Hered 82:302–304

    PubMed  CAS  Google Scholar 

  • Waines JG, Hegde SG (2003) Intraspecific gene flow in bread wheat as affected by reproductive biology and pollination ecology of wheat flowers. Crop Sci 43:451–463

    Article  Google Scholar 

  • Witrzens B, Brettell R, Murray F, McElroy D, Li Z, Dennis E (1998) Comparison of three selectable marker genes for transformation of wheat by microprojectile bombardment. Aust J Plant Physiol 25:39–44

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatford, K.T., Basri, Z., Edlington, J. et al. Gene flow from transgenic wheat and barley under field conditions. Euphytica 151, 383–391 (2006). https://doi.org/10.1007/s10681-006-9160-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-006-9160-1

Keywords

Navigation