Skip to main content

Advertisement

Log in

Heterosis for Yield and some Physiological Traits in Hybrid Cotton Cikangza 1

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

The characterization of yield and yield components, chlorophyll, soluble sugars and N, P, K concentrations, and SOD, POD activities and MDA content was compared between F1 Bt hybrid cotton Cikangza 1 and its male (transgenic Bt gene bollworm resistant lines and female parents, and commercial hybrid Xiangzamian 2 under field condition. The result showed that the hybrid Cikangza 1 had distinct heterosis in lint yield as reflected by HOBP and HOMP values of 25.7% and 28.9%, and the heterosis of bolls per plant was significantly higher than that of boll weight and lint percentage. Significant HOBP, HOMH and HOCP in Chl a, Chl b and Chl (a+b) at SS and FFS were observed in Cikangza 1, suggesting that the higher Chl content at SS and FFS is important for achieving potential yield, and thereafter may aid in identification of parental lines and hybrid combination. The results also elucidated that the HOBP and HOMP of N, P and K concentrations, and SOD and POD activities were much smaller in comparison with those of Chl parameters. However, Cikangza 1 has higher soluble sugars content, and N and K concentrations at FFS and BOS, than that of commercial hybrid Xiangzamian 2, denoting that N and K nutrient might perform an important function in senescence, and more additional application of N and K fertilizer at late growth stages of hybrid may be beneficial to keep more nutrient for late growth stage and delay the senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Bt:

Bacillus thuringiensis

HOBP:

heterosis over better of parents

HOMP:

Heterosis over mean of parents

HOCH:

heterosis over the control hybrid

SOD:

superoxide dismutase

POD:

peroxidase

MDA:

malondialdehyde

References

  • Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts phenoloxidases in beta vultaris. Plant Physiol 24: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Basu, A.K. & N.B. Patil, 1993. Producing quality cotton from commercial cotton hybrids grown under rainfed conditions in India. Technical Seminar at the 52nd Plenary Meeting of the International Cotton Advisary Committee, New Delhi.

  • Chaudhry, M.R., 1997. Commercial cotton hybrids. The Int Cotton Advisory Committee Recorder XV(2): 3–14.

  • Dong, H.Z., W.J. Li, W. Tang & D.M. Zhang, 2004. Development of hybrid Bt cotton in China- a successful integration of transgenic technology and conventional techniques. Curr Sci 86: 778–782.

    Google Scholar 

  • Evans, L.T., 1993. Crop Evolution, Adaptation, and Yield. Cambridge University Press, Cambridge.

    Google Scholar 

  • Godoy, A.S. & G.A. Palomo, 1999. Genetic analysis of earliness in upland cotton (Gossypium hirsutum L.) II. Yield and lint percentage. Euphytica 105: 161–166.

    Article  Google Scholar 

  • Jing, S.H., C.Z. Xing, Y.L. Yuan, S.L. Liu, H.L. Wang & L.P.Guo, 1997. Study on breeding and utilization of hybrid cotton resistant to insect. China Cotton 24(7): 15–17.

    Google Scholar 

  • Li, J.F., 2005. Research on Chinese Cotton hybrid vigor utilization. Jiangxi Cotton 27(1): 3–7.

    Google Scholar 

  • Meredith, W.R. Jr, 1990. Yield and fiber-quality potential for secondgeneration cotton hybrids. Crop Sci 30: 1045–1048.

    Article  Google Scholar 

  • Murray, J.C. & I.M. Verhalen, 1969. Genetics of earliness, yield, and fiber properties in cotton (Gossypium hirsutum L.). Crop Sci 9: 752–755.

    Article  Google Scholar 

  • Qian, D.S., X.S. Chen, X.G. Zhang, J.C. Di & N.Y. Xu, 2000. Advances in physiological and biochemical study or hybrid vigor in cotton. Acta Gossypii Sinica 12(1): 45–48.

    Google Scholar 

  • Sinha, S.K. & R. Khana, 1975. Physiological, biochemical and genetic basic of heterosis. Advan Agron 27: 123–174.

    Article  Google Scholar 

  • Srivastava, H.K., 2000. Nuclear control and mitochondrial transcript processing with relevance to cytoplasmic male sterility in higher plants. Curr Sci 79 (2): 176–186.

    CAS  Google Scholar 

  • Stuber, C., 1999. Biochemistry, molecular biology and physiology of heterosis. In: J.G. Coors & S. Pandey (Eds.), The Genetics and Exploitation of Heterosis in Crops, pp. 173–183. American Society of Agronomy, Madison.

  • Wang, R.H. & X.L. Li, 2000. Progresses on hybrid cotton and its future studies. Scientia Agric Sinica 33: 111–112.

    Google Scholar 

  • Wu, F., G. Zhang & P. Dominy, 2003. Four barley genotypes respond differently to cadmium: Lipid peroxidation and activities of antioxidant capacity. Environ Exp Bot 50: 67–78.

    Article  CAS  Google Scholar 

  • Xing, Z.Z., S.R. Jing, L.P. Guo, Y.L. Yuan & H.L. Wang, 2000. Study on heterosis and combining ability of transgenic Bt cotton,. Acta Gossypii Sinica 12(1): 6–11.

    Google Scholar 

  • Zhang Z.S., X.B. Li, Y.H. Xiao, M. Luo, D. Liu, S.L. Huang & F.X. Zhang, 2003. Combining ability and heterosis between high strength lines and transgenic Bt (Bacillus thuringiensis) bollworm-resistant lines in upland cotton (Gossypium hirsutum L.). Agric Sci in China 2(1): 13–18.

    Google Scholar 

  • Zhang, T.Z. & C.M. Tang, 2000. Commercial production of transgenic Bt insect resistant cotton varieties and the resistance management for bollworm. China Sci Bull 45: 1249–1257.

    Article  CAS  Google Scholar 

  • Zhang, T.Z. & J.J. Pan, 1999. Hybrid seed production in cotton. In: A.S. Basra (ed.), Heterosis and Hybrid Seed Production in Agronomic Crops, pp. 149–184. Food Production Press, New York.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feibo Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, J., Wu, F., Jin, Z. et al. Heterosis for Yield and some Physiological Traits in Hybrid Cotton Cikangza 1. Euphytica 151, 71–77 (2006). https://doi.org/10.1007/s10681-006-9129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-006-9129-0

Keywords

Navigation