Skip to main content
Log in

Wheat transformation – an update of recent progress

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Genetic transformation is vital to the transfer of novel genes into crop plants as well as to the emerging area of functional genomics. However, the successful genetic transformation of wheat still remains time consuming and genotype dependent. This paper updates the progress made in last 3 years towards developing a robust genetic transformation system for wheat. Agrobacterium-mediated wheat transformation offers advantages such as single-copy gene insertion, minimal rearrangement of DNA, low cost and comparatively high efficiency. The reported recent developments in wheat transformation will lead to increased efficiency of wheat breeding programs. The most promising recent progress is in the development of drought-tolerant wheat, since water stress continues to be a major limiting factor hindering world wheat productivity under adverse hot and dry weather conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altpeter, F., V. Vasil, V. Srivastava, E. Stöger & I.K. Vasil, 1996. Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep 16: 12–17.

    Article  CAS  Google Scholar 

  • Alvarez, M.L., S. Guelman, N. Halford, S. Lustig, M. Reggiard, N. Ryabushkina, P. Schewry, J. Stein & R. Vallejos, 2000. Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet 100: 319–327.

    Article  CAS  Google Scholar 

  • Amoah, B.K., H. Wu, C. Sparks & H.D. Jones, 2001. Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. J Expert Bot 52: 1135–1142.

    Article  CAS  Google Scholar 

  • Blechl, A.E. & O.D. Anderson, 1996. Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. Nat Biotech 14: 875–879.

    Article  CAS  Google Scholar 

  • Bliffeld, M., J. Mundy, I. Potrykus & J. Futterer, 1999. Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor Appl Genet 98: 1079–1086.

    Article  CAS  Google Scholar 

  • Chen, W.P., X. Gu, G.H. Liang, S. Muthukrishnan, P.D. Chen, D.J. Liu & B.S. Gill, 1998. Introduction and constitutive expression of a rice chitinase gene in bread wheat using biolist bombardment and the bar gene as a selectable marker. Theor Appl Genet 97: 1296–1306.

    Article  CAS  Google Scholar 

  • Cheng, M., J.E. Fry, S., Pang, H. Zhou, C. M. Hironaka, D. R. Duncan, T. W. Conner & Y. Wan, 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115: 971-980.

    PubMed  CAS  Google Scholar 

  • Chong, K., S. Bao, T. Xu, K. Tan, T. Liang, J. Zeng, H. Huang, J. Xu & J. Xu, 1998. Functional analysis of the ver gene using transgenic wheat. Physiol Plant 102: 87–92.

    Article  CAS  Google Scholar 

  • Chugh, A. & P. Khurana, 2003. Regeneration via somatic embryogenesis from leaf basal segments and genetic transformation of bread and emmer wheat by particle bombardment. Plant Cell, Tissue and Org Cult 74: 151–161.

    Article  CAS  Google Scholar 

  • de Block, M., D., Debrouwer & T. Moens, 1997. The development of a nuclear male sterility system in wheat. Expression of the Barnase Gene Under the Control of Tapetum Specific Promoters. Theor Appl Genet 95: 125–131.

    Article  Google Scholar 

  • Ebinuma, H., K., Sugita, E. Matsunaga & M. Yamakado, 1997. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA 94: 2117–2121.

    Article  PubMed  CAS  Google Scholar 

  • Erikson, O., M. Hertzberg & T. Nasholm, 2004. A conditional marker gene allowing both positive and negative selection in plants. Nat Biotech 22: 455–458.

    Article  CAS  Google Scholar 

  • Gopalalakrishna, S., P. Singh & N.K. Singh, 2003. Transient expression of foreign genes in mature wheat embryo explants following particle bombardment. Physiol Mol Biol Plants 9: 217–223.

    Google Scholar 

  • Haliloglu, K. & P.S. Baenziger, 2003a. Agrobacterium tumefaciens-mediated wheat transformation. Cereal Res Comm 31: 9–16.

    CAS  Google Scholar 

  • Haliloglu, K. & P.S. Baenziger, 2003b. Response of wheat genotypes to Agrobacterium tumefaciens-mediated transformation. Cereal Res Comm 31: 241–248.

    CAS  Google Scholar 

  • He, D.G., A. Mouradev, Y.M. Yang, E. Mouradeva & K.J. Scott, 1994. Transformation of wheat (Triticum aestivum L.) through electroporation of protoplasts. Plant Cell Rep 14, 192–196.

    Article  CAS  Google Scholar 

  • Hohn, B., A.A. Levy & H. Puchta, 2001. Elimination of selectable markers from transgenic plants. Curr Opinion Biotech 12: 139–143.

    Article  CAS  Google Scholar 

  • Hu, T., S. Metz, C. Chay, H. P. Zhou, N. Biest, G. Chen, M. Cheng, X. Feng, M. Radionenko, F. Lu & J. Fry, 2003. Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21: 1010–1019.

    Article  PubMed  CAS  Google Scholar 

  • Iser, M., S. Fettig, F. Scheyhing, K. Viertel & D. Hess, 1999. Genotype-dependent stable genetic transformation in German spring wheat varieties selected for high regeneration potential. J Plant Physiol 154: 509–516.

    CAS  Google Scholar 

  • Janakiraman, V., M. Steinau, S.B. McCoy & H.N. Trick, 2002. Recent advances in wheat transformation. In Vitro Cell Develop Biol – Plant 38: 404–414.

    Article  CAS  Google Scholar 

  • Kasuga, M., Q. Liu, S. Miura, K.Yamaguchi-Shinozaki & K. Shinozaki, 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotech 17: 287–291.

    Article  CAS  Google Scholar 

  • Khanna, H.K. & G.E. Daggard, 2001. Enhanced shoot regeneration in nine Australian wheat cultivars by spermidine and water stress treatments. Aust J Plant Physiol 28: 1243–1247.

    CAS  Google Scholar 

  • Khanna, H.K. & G.E. Daggard, 2003. Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep 21: 429–436.

    PubMed  CAS  Google Scholar 

  • Komari, T., Y. Hiei, Y. Saito, N. Murai & T. Kumashiro, 1996. Vectors carrying two sepatate T-DNAs for co-transformation of higher plants mediated by agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10: 165–174.

    Article  PubMed  CAS  Google Scholar 

  • Lorz, H., B. Baker & J. Schell, 1985. Gene transfer to cereal cells mediated by protoplast transformation. Mol Gen Genet 199: 178–192.

    Article  Google Scholar 

  • McCormac, A.C., H.X. Wu, M.Z. Bao, Y.B. Wang, R.J. Xu, M.C. Elliott & D. F. Chen, 1998. The use of visual marker genes as cell-specific reporters of Agrobacterium-mediated T-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Euphytica 99: 17–25.

    Article  CAS  Google Scholar 

  • Mitic, N., R. Nikolic, S. Ninkovic, J. Miljus-Djukic & M. Neskovic, 2004. Agrobacterium-mediated transformation and plant regeneration of Triticum aestivum L. Biol Plant 48: 179–184.

    Article  CAS  Google Scholar 

  • Odell, J., P. Caimi, B. Sauer, S. Russell, 1990. Site-directed recombination in the genome of transgenic tobacco. Mol Gen Genet 223: 369–378.

    Article  PubMed  CAS  Google Scholar 

  • Patnaik, D. & P. Khurana, 2001. Wheat Biotechnology: A minireview. Elec J Biotech 4: 74–102.

    Google Scholar 

  • Patnaik, D. & P. Khurana, 2003. Genetic transformation of Indian bread (T. aestivum) and pasta (T. durum) wheat by particle bombardment of mature embryo-derived calli. BMC Plant Biology 3:5 http://www.biomedcentral.com/1471–2229/3/5.

  • Pellegrineschi, A., M. Reynolds, M. Pacheco, R.M. Brito, R. Almeraya, K. Yamaguchi-Shinozaki & D. Holsington, 2004. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47: 493–500.

    Article  PubMed  CAS  Google Scholar 

  • Permingeat, H.R., M.L. Alvarez, G.D.L. Cervigni, R.A. Ravizzini & R.H. Vallejos, 2003. Stable wheat transformations obtained without selectable markers. Plant Mol Biol 52: 415–419.

    Article  PubMed  CAS  Google Scholar 

  • Przetakiewicz, A., W. Orczyk & A. Nadolska-Orczyk, 2003. The effect of auxin on plant regeneration of wheat, barley and triticale. Plant Cell Tissue Org Cult 73: 245–256.

    Article  CAS  Google Scholar 

  • Puchta, H. 2003. Marker-free transgenic plants. Plant Cell Tissue Org Cult 74: 123–134.

    Article  CAS  Google Scholar 

  • Rasco-Gaunt, S., A. Riley, M. Cannell, P. Barcelo, P. A & Lazzeri, 2001. Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. J Exp Bot 52, 865–874.

    PubMed  CAS  Google Scholar 

  • Sahrawat, A.K., D. Becker, S. Lutticke & H. Lorz, 2003. Genetic improvement of wheat via alien gene transfer, an assessment. Plant Sci 165: 1147–1168.

    Article  CAS  Google Scholar 

  • Sawahel, W.A., A.H. Hassan, 2002. Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotech Letters 24: 721–725.

    Article  CAS  Google Scholar 

  • Serik, O., I. Ainur, K. Murat, M. Tetsuo & I. Masaki, 1996. Silicon carbide fiber-mediated DNA delivery into cells of wheat (Triticum aestivum L.) mature embryos. Plant Cell Rep 16: 133–136.

    Article  CAS  Google Scholar 

  • Sivamani, E., A. Bahieldin, J. M. Wraith, T. Al-Niemi, W.E. Dyer, T.H.D. Ho & R. Qu, 2000. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVAI gene. Plant Sci 155: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, V., O.D. Anderson & D.W. Ow, 1999. Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Nat Acad Sci USA 96: 11117–11121.

    Article  PubMed  CAS  Google Scholar 

  • Stoger, E., S. Williams, P. Christou, R.E. Down & J.A. Gatehouse, 1999. Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin: GNA) in transgenic wheat plants: Effects on predation by the grain aphid Sitobon avenae. Mol Breeding 5: 65–73.

    Article  CAS  Google Scholar 

  • Varshney, A. & F. Altpeter, 2001. Stable transformation and tissue culture response in current European winter wheats (Triticum aestivum L.). Mol Breeding 8: 295–309.

    Article  CAS  Google Scholar 

  • Vasil, V., S.M. Brown, D. Re, M.E. Fromm & I.K. Vasil, 1991. Stably transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat. Biotech 9: 743–747.

    Article  CAS  Google Scholar 

  • Vasil, V., A.M. Castillo, M.E. Fromm & I.K. Vasil, 1992. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Biotech 10: 667–674.

    Article  CAS  Google Scholar 

  • Vasil, I.K. & V. Vasil, 1999. Transformation of wheat via particle bombardment. Methods Mol Biol 111: 349–358.

    PubMed  CAS  Google Scholar 

  • de Vetten, N., A.M. Wolters, K. Raemakers, I. van der Meer, R. ter Stege, E. Heeres, P. Heeres & R. Visser, 2003. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotech 21: 439–442.

    Article  CAS  Google Scholar 

  • Weeks, J.T., O.D. Anderson & A. E. Blechl, 1993. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol 102: 1077–1084.

    PubMed  CAS  Google Scholar 

  • Wenck A., C. Pugieux, M. Turner, M. Dunn, C. Stacy, A. Tiozzo, E. Dunder, E. Grinsven, R. Khan, M. Sigareva, W.C. Wang, J. Reed, P. Drayton, D. Oliver, H. Trafford, G. Legris, H. Rushton, S. Tayab, K. Launis, Y.-F. Chang, D.-F. Chen & L. Melchers, 2003. Reef-coral proteins as visual, non-destructive reporters for plant transformation. Plant Cell Rep 22: 244–251.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H., C. Sparks, B. Amoah & H.D. Jones, 2003. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21, 659–668.

    PubMed  CAS  Google Scholar 

  • Zhao, X., I. Coats, P. Fu, B. Gordon-Kamm & L.A. Lyznik, 2003. T-DNA recombination and replication in maize cells. Plant J 33: 149–159.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, H., J.W. Arrowsmith et al., 1995. Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep 15, 159–163.

    CAS  Google Scholar 

  • Zhou, H., J.D. Berg, S.E. Blank, C. A. Chay, G. Chen, S.R. Eskelsen, J.E. Fry, S. Hoi, T. Hu, P.J. Isakson, M.B. Lawton, S.G. Metz, C.B. Rempel, D.K. Ryerson, A.P. Sansone, A.L. Shook, R.J. Starke, J.M. Tichota & S.A. Valenti, 2003. Field efficacy assessment of transgenic Roundup Ready wheat. Crop Sci 43, 1072–1075.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem L. Bhalla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhalla, P.L., Ottenhof, H.H. & Singh, M.B. Wheat transformation – an update of recent progress. Euphytica 149, 353–366 (2006). https://doi.org/10.1007/s10681-006-9087-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-006-9087-6

Key words

Navigation