Skip to main content

Advertisement

Log in

Analysis of drought risk management strategies using dynamic inoperability input–output modeling and event tree analysis

  • Published:
Environment Systems and Decisions Aims and scope Submit manuscript

Abstract

Climate change is expected to increase the frequency and intensity of droughts in many parts of the world. Since water is an essential resource for many economic activities, water scarcity can cause disruptions that manifest as losses in industrial outputs. These effects can propagate through economic systems as a result of the inherent interdependencies among economic sectors. Risk management strategies for droughts must therefore account for both direct and indirect effects of water supply disruptions. In this work, we propose a methodology for evaluating drought management strategies by combining economic input–output modeling with event tree analysis. We apply the methodology to a simulated drought scenario affecting the United States National Capital Region. Three risk management strategies, namely, reducing the initial level of water supply disruption, managing water consumption, and prioritizing water-use dependencies, are evaluated based on inoperability levels and cumulative economic losses. Results show that while managing water consumption yields the lowest cumulative economic losses in the region, reducing the initial level of water supply disruption and prioritizing water-use dependencies result in lower inoperability of critical sectors. These findings provide insights for decision makers in identifying critical sectors and formulating timely intervention strategies that minimize the overall effects of drought to economic systems. Further, the proposed modeling framework for drought risk assessment can be applied to other regions to evaluate the effects of drought severity and management strategies over the drought timeline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ABARES (2012) Drought in Australia: context, policy and management. Report prepared for the Australia China Environment Development Partnership, Canberra

  • Addams L, Boccaletti G, Kerlin M, Stuchtey M (2009) Charting our water future: economic frameworks to inform decision-making. McKinsey & Company, New York

    Google Scholar 

  • Albuquerque Bernalillo County Water Utility Authority (2012) Water resources management strategy implementation: drought management strategy. http://abcwua.org/uploads/files/Your%20Drinking%20Water/dms2012.pdf. Accessed 21 Apr 2014

  • Allan JA (1998) Virtual Water: a strategic resource global solutions to regional deficits. Groundwater 36(4):545–546

    Article  CAS  Google Scholar 

  • American Water Works Association (2011) Drought preparedness and response: manual of water supply practices—M60, 1st edition. C Brown, B Skeens (eds). American Water Works Association, Colorado

  • Aviso KB, Tan RR, Culaba AB, Cruz JB (2011) Fuzzy input–output model for optimizing eco-industrial supply chains under water footprint constraints. J Clean Prod 19(2–3):187–196

    Article  Google Scholar 

  • Bazerman MH (2006) Climate change as a predictable surprise. Clim Change 77(1–2):179–193

    Article  Google Scholar 

  • Bella A, Duckstein L, Szidarovszky F (1996) A multicriterion analysis of the water allocation conflict in the upper Rio Grande basin. Appl Math Comput 77(2):245–265

    Article  Google Scholar 

  • Cai X, McKinney D, Lasdon L (2003) Integrated hydrologic-agronomic-economic model for river basin management. J Water Resour Plan Manag 129(1):4–7

    Article  Google Scholar 

  • California Department of Public Health (2014) Drought preparedness, water conservation and water supply emergency response. http://www.cdph.ca.gov/certlic/drinkingwater/Pages/DroughtPreparedness.aspx. Accessed 23 Apr 2014

  • Chowdhury F, Lant C, Dziegielewski B (2013) A century of water supply expansion for ten US cities. Appl Geogr 45:58–76

    Article  Google Scholar 

  • David CPC, Cayton PJA, Lorenzo TE, Santos EC (2014) Statistical analysis of Philippine water districts and how these affect water tariffs. Water Int 39:1–9

    Article  Google Scholar 

  • Dilley M, Chen RS, Deichmann U, Lerner-Lam AL, Arnold M (2005) Natural disaster hotspots: a global risk analysis. World Bank, Washington DC

    Book  Google Scholar 

  • Federal Emergency Management Agency (2013) Strategic foresight initiative. http://www.fema.gov/strategic-planning-analysis-spa-division/strategic-foresight-initiative. Accessed Apr 23 2014

  • Fisher A, Fullerton D, Hatch N, Reinelt P (1995) Alternatives for managing drought: a comparative cost analysis. J Environ Econ Manag 29:304–320

    Article  Google Scholar 

  • Fontaine M, Steinemann A, Hayes M (2014) State drought programs and plans: survey of the western United States. Nat Hazards Rev 15(1):95–99

    Article  Google Scholar 

  • Fraundorfer R, Liemberger R (2010) The issues and challenges of reducing non-revenue water. Asian Development Bank, Mandaluyong City

    Google Scholar 

  • Fundel F, Jörg-Hess S Zappa M (2013) Monthly hydrometeorological ensemble prediction of streamflow droughts and corresponding drought indices. Hydrol Earth Syst Sci 17(1):395–407

    Article  Google Scholar 

  • Genskow KD, Born SM (2006) Organizational dynamics of watershed partnerships: a key to integrated water resources management. J Contemp Water Res Educ 135:56–64. doi:10.1111/j.1936-704X.2006.mp135001007.x

    Article  Google Scholar 

  • Githeko AK, Lindsay SW, Confalonieri UE, Patz JA (2000) Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ 78(9):1136–1147

    CAS  Google Scholar 

  • Glenn JC, Gordon TJ, Florescu E (2012) State of the future. The Millennium Project, Washington DC

    Google Scholar 

  • Gössling S, Peeters P, Hall CM, Ceron JP, Dubois G, Lehmann LV, Scott D (2012) Tourism and water use: supply, demand, and security: an international review. Tour Manag 33(1):1–15

    Article  Google Scholar 

  • Grafton RQ, Ward MB (2008) Prices versus rationing: marshallian surplus and mandatory water restrictions. Econ Rec 84:S57–S65

    Article  Google Scholar 

  • Haimes YY (1991) Total risk management. Risk Anal 11(2):169–171

    Article  Google Scholar 

  • Haimes YY, Jiang P (2001) Leontief-based model of risk in complex interconnected infrastructures. J Infrastruct Syst 7(1):1–12

    Article  Google Scholar 

  • Haines A, Kovats RS, Campbell-Lendrum D, Corvalán C (2006) Climate change and human health: impacts, vulnerability and public health. Public Health 120(7):585–596

    Article  CAS  Google Scholar 

  • Harou JJ, Medellín-Azuara J, Zhu T, Tanaka SK, Lund JR, Stine S, Olivares MA, Jenkins MW (2010) Economic consequences of optimized water management for a prolonged, severe drought in California. Water Resour Res 46:W05522. doi:10.1029/2008WR007681

    Google Scholar 

  • Hayes MJ, Svoboda MD, Wilhite DA, Vanyarkho OV (1999) Monitoring the 1996 drought using the standardized precipitation index. Bull Am Meteorol Soc 80:429–438

    Article  Google Scholar 

  • Hensher D, Shore N, Train K (2006) Water supply security and willingness to pay to avoid drought restrictions. Econ Rec 82:56–66. doi:10.1111/j.1475-4932.2006.00293.x

    Article  Google Scholar 

  • Hoekstra AY, Mekonnen MM (2012) The water footprint of humanity. Proc Nat Acad Sci USA 109(9):3232–3237

    Article  CAS  Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    Article  Google Scholar 

  • Hughes N, Hafi A, Goesch T (2009) Urban water management: optimal price and investment policy under climate variability. Aust J Agric Resour Econ 53:175–192. doi:10.1111/j.1467-8489.2007.00446.x

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change, 2007. Cambridge University Press, New York

  • Intergovernmental Panel on Climate Change (2014) Climate change 2014: impacts, adaptation and vulnerability. IPCC Working Group II Contribution to AR5. http://www.ipcc-wg2.gov/AR5. Accessed 21 Apr 2014

  • International Decade for Natural Disaster Reduction (IDNDR) (1995) Major disasters around the world. Secretariat, International Decade for Natural Disaster Reduction, Geneva

    Google Scholar 

  • Jenkins MW, Lund JR, Howitt RE (2003) Using economic loss functions to value urban water scarcity in California. Am Water Resour Assoc 95(2):58–70

    CAS  Google Scholar 

  • Jones RN, Whetton PH, Walsh KJE, Page CM (2002) Future impacts of climate variability, climate change and land use change on water resources in the Murray Darling Basin: overview and draft program of research. Murray-Darling Basin Commission, Canberra

    Google Scholar 

  • Kaplan S, Garrick BJ (1981) On the quantitative definition of risk. Risk Anal 1(1):11–27

    Article  Google Scholar 

  • Keim ME (2008) Building human resilience: the role of public health preparedness and response as an adaptation to climate change. Am J Prev Med 35(5):508–516

    Article  Google Scholar 

  • Keyantash J, Dracup JA (2002) The quantification of drought: an evaluation of drought indices. Bull Amer Meteor Soc 83:1167–1180

    Article  Google Scholar 

  • Koch H, Vögele S (2009) Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change. Ecol Econ 68(7):2031–2039

    Article  Google Scholar 

  • Lake PS (2003) Ecological effects of perturbation by drought in flowing waters. Freshwater Biol 48:1161–1172

    Article  Google Scholar 

  • Lennox J, Dinkanova O (2011) Modeling the regional general equilibrium effects of water allocation in Canterbury. Water Policy 13:250–264

    Article  Google Scholar 

  • Leontief W (1936) Quantitative input and output relations in the economic system of the United States. Rev Econ Stat 18(3):105–125

    Article  Google Scholar 

  • Lian C, Haimes YY (2006) Managing the risk of terrorism to interdependent infrastructure systems through the dynamic inoperability input-output model. Syst Eng 9(3):241–258

    Article  Google Scholar 

  • Llop M (2013) Water reallocation in the input–output model. Ecol Econ 86:21–27

    Article  Google Scholar 

  • Logar I, van den Bergh JCJM (2013) Methods to assess costs of drought damages and policies for drought mitigation and adaptation: review and recommendations. Water Resour Manag 27(6):1707–1720

    Article  Google Scholar 

  • Lopez-Morales C, Duchin F (2011) Policies and technologies for a sustainable use of water in Mexico: a scenario analysis. Econ Syst Res 23(4):387–407. doi:10.1080/09535314.2011.635138

    Article  Google Scholar 

  • Martin-Carrasco F, Garrote L, Iglesias A, Mediero L (2013) Diagnosing causes of water scarcity in complex water resources systems and identifying risk management actions. Water Resour Manag 27:1693–1705. doi:10.1007/s11269-012-0081-6

    Article  Google Scholar 

  • Meyer V, Becker N, Markantonis V, Schwarze R, van den Bergh JCJM, Bouwer LM, Bubeck P, Ciavola P, Genovese E, Green C, Hallegatte S, Kreibich H, Lequeux Q, Logar I, Papyrakis E, Pfurtscheller C, Poussin J, Przyluski V, Thieken AH, Viavattene C (2013) Assessing the costs of natural hazards – state of the art and knowledge gaps. Nat Hazards Earth Syst Sci 13:1351–1373. doi:10.5194/nhess-13-1351-2013

    Article  Google Scholar 

  • Michelsen AM, Young RA (1993) Optioning agricultural water rights for urban water supplies during drought. Am J Agri Econ 75:1010–1020

    Article  Google Scholar 

  • Miller RE, Blair PD (2009) Input-output analysis: Foundations and extensions, 2nd edn. University Press, Cambridge

    Book  Google Scholar 

  • Molle F, Berkoff J (2009) Cities vs. agriculture: a review of intersectoral water re-allocation. Nat Resour Forum 33:6–18. doi:10.1111/j.1477-8947.2009.01204

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA) (2014) Billion dollar weather/climate disasters. National Climatic Data Center. http://www.ncdc.noaa.gov/billions/overview. Accessed 23 Apr 2014

  • National Oceanic and Atmospheric Administration and the Governor’s Association (2004) Creating a drought early warning system for the 21st century: the national integrated drought information system. Western Governors Association. http://www.esrl.noaa.gov/psd/news/2006/pdf/nidis.pdf. Accessed 23 Apr 2014

  • Pagsuyoin SA, Santos JR (2014) Modeling the effects of drought in urban economies using input–output analysis. Br J Environ Clim Change (accepted)

  • Palmer WC (1965) Meteorological drought. Research paper No. 45. United States Weather Bureau, Washington DC

    Google Scholar 

  • Rico-Amoros AM, Olcina-Cantos J, Sauri D (2009) Tourist land use patterns and water demand: evidence from the Western Mediterranean. Land Use Policy 26(2):493–501

    Article  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FS III, Lambin E, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475

    Article  Google Scholar 

  • Rose A (2007) Economic resilience to disasters: multidisciplinary origins and contextual dimensions. Environ Haz Hum Soc Dimens 7(4):383–398

    Google Scholar 

  • Rosegrant MW, Ringler C (2000) Impact on food security and rural development of transferring water out of agriculture. Water Policy 1(6):567–586

    Article  Google Scholar 

  • Rowland M (2005) A framework for resolving the transboundary water allocation conflict conundrum. Ground Water 43(5):700–705

    Article  CAS  Google Scholar 

  • Roy SB, Chen L, Girvetz EH, Maurer EP, Mills WB, Grieb TM (2012) Projecting water withdrawal and supply for future decades in the U.S. under climate change scenarios. Environ Sci Technol 46(5):2545–2556. doi:10.1021/es2030774

  • Russell CS, Arey DG, Kates RW (1970) Drought and water supply: implications of the Massachusetts experience for municipal planning. Resources for the Future, Baltimore

    Google Scholar 

  • Santos JR, Haimes YY (2004) Modeling the demand reduction input-output inoperability due to terrorism of interconnected infrastructures. Risk Ana 24(6):1437–1451

    Article  Google Scholar 

  • Santos JR, Yu KDS, Pagsuyoin SA, Tan RR (2014) Time-varying recovery model for interdependent economic systems using hybrid input-output and event tree analysis. Econ Syst Res 26(1):60–80

    Article  Google Scholar 

  • Scott CA, Pasqualetti MJ (2010) Energy and water resources scarcity: critical infrastructure for growth and economic development in Arizona and Sonora. Nat Resour J 50:645–682

    Google Scholar 

  • Seung CK, Harris TR, Englin J, Netusil N (2000) Impacts of water reallocation: a combined computable general equilibrium and recreation demand model approach. Annu Reg Sci 34:473–487

    Article  Google Scholar 

  • Shmelev SE (2012) Ecological Economics: Sustainability in Practice. Springer, New York

    Book  Google Scholar 

  • Smith AB, Katz RW (2013) US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases. Nat Hazard 67(2):387–410. doi:10.1007/s11069-013-0566-5

    Article  Google Scholar 

  • Stoutenborough JW, Vedlitz A (2014) Public attitudes toward water management and drought in the United States. Water Resour Manag 28(3):697–714

    Article  Google Scholar 

  • Syme GJ, Nancarrow BE, Seligman C (2000) The evaluation of information campaigns to promote voluntary household water conservation. Eval Rev 24(6):539–578

    Article  Google Scholar 

  • Tan RR, Aviso KB, Barilea IU, Culaba AB, Cruz JB (2012) A fuzzy multi-regional input-output optimization model for biomass production and trade under resource and footprint constraints. Appl Energy 90(1):154–160

    Article  Google Scholar 

  • Thompson BH (2000) Markets for nature. William Mary Environ Law Policy Rev 25(2):Rev 261

    Google Scholar 

  • United States Bureau of Economic Analysis (2014) Regional Economic Accounts. http://bea.gov/regional/index.htm. Accessed 23 Jul 2014

  • United States Environmental Protection Agency (2013) Water audits and water loss control for public water systems. http://water.epa.gov/type/drink/pws/smallsystems/upload/epa816f13002.pdf. Accessed 27 Apr 2014

  • van Dijk AIJM, Beck HE, Crosbie RS, Jeu RAM, Liu YY, Podger GM, Timbal B, Viney NR (2013) The millennium drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour Res 49(2):1040–1057

    Article  Google Scholar 

  • Venkataramana S, Hubbard KG, You J, Hunt ED (2008) Development of the soil moisture index to quantify agricultural drought and its user friendliness in severity-area-duration assessment. J Hydrometeorol 9(4):660–676. doi:10.1175/2007JHM892.1

    Article  Google Scholar 

  • Virginia Department of Environmental Quality (2014) Current status of Virginia drought regions and drought indicators. http://www.deq.state.va.us/Programs/Water/WaterSupplyWaterQuantity/Drought/DroughtIndicators.aspx. Accessed 21 Apr 2014

  • Walchuk Z, Barker K (2013) Analyzing interdependent impacts of resource sustainability. Environ Syst and Decis 33(3):391–403

    Article  Google Scholar 

  • Wang L, Fang L, Hipel KW (2008) Basin-wide cooperative water resources allocation. Eur J Oper Res 190(3):798–817

    Article  Google Scholar 

  • Ward F, Pulido-Velazquez M (2012) Economic costs of sustaining water supplies: findings from the Rio Grande. Water Resour Manag 26(10):2883–2909

    Article  Google Scholar 

  • Wilhite DA, Svoboda MD, Hayes MJ (2007) Understanding the complex impacts of drought: a key to enhancing drought mitigation and preparedness. Water Resour Manag 21(5):763–774

    Article  Google Scholar 

  • Wyatt AS (2010). Non-revenue water: financial model for optimal management in developing countries. RTI Press Publication No. MR-0018-1006. RTI International. http://www.rti.org/pubs/mr-0018-1006-wyatt.pdf. Accessed 27 Apr 2014

  • Zhao X, Yang H, Yang Z, Chen B, Qin Y (2010) Applying the input-output method to account for water footprint and virtual water trade in the Haihe River Basin in China. Environ Sci Technol 44:9150–9156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost R. Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, J.R., Pagsuyoin, S.T., Herrera, L.C. et al. Analysis of drought risk management strategies using dynamic inoperability input–output modeling and event tree analysis. Environ Syst Decis 34, 492–506 (2014). https://doi.org/10.1007/s10669-014-9514-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10669-014-9514-5

Keywords

Navigation