Skip to main content

Advertisement

Log in

Identification of groundwater potential zones of Alappuzha (Kerala) in South India integrating AHP and GIS

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Groundwater is one of the important natural resources that is essential to sustain the life on Earth. Crisis related to groundwater and other water resources is becoming severe in the recent years. Controlled use of water recourses and management of groundwater aquifers in indispensable. This study has been carried out to identify groundwater recharge or groundwater potential area of Alappuzha, Kerala, South India. Groundwater potential signifies the total quantity of water that occupying in the aquifer, and it varies from one area to another due to change in aquifer properties. Investigation on the groundwater potential study is done by Analytical Hierarchy Process (AHP) and also incorporating Geographical Information System (GIS). Eight thematic GIS layers including geology, geomorphology, soil, rainfall, slope, drainage density, land use/ land cover (LULC) and lineament density were chosen. Pair-wise comparison technique was employed to assign weight and rank to these layers and the weighted sum of all these layers aided to create the groundwater potential zone (GWPZ) map of Alappuzha. The map classified the study area in to five zones, very high, high, moderate, poor and very poor. In Alappuzha very high potential zone is extends up to 106 km2 about 8% of the study area. High potential zones spread over 755.4 km2 (59%) of the area. 311.9 km2 (24%) of Alappuzha is occupied by moderate GWPZ. The poor and very poor GWPZ covers about 85.01 km2 (7%) and 16.9 km2 (1.2%), of the study area respectively. The least unsuitable for subsurface recharge was identified along the coastal stretch, characterized by high drainage density and intense discharge rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included within the manuscript.

Code availability

Not applicable.

References

  • Arulbalaji, P., Padmalal, D., & Sreelash, K. (2019). GIS and AHP techniques based delineation of groundwater potential zones: A case study from southern Western Ghats India. Scientific Reports, 9(1), 1–17.

    Article  CAS  Google Scholar 

  • Athick AMA, & Shankar K (2019). Data on land use and land cover changes in Adama Wereda, Ethiopia, on ETM+, TM and OLI-TIRS landsat sensor using PCC and CDM techniques. Data in brief, 24

  • Athick, A. M. A., Shankar, K., & Naqvi, H. R. (2019). Data on time series analysis of land surface temperature variation in response to vegetation indices in twelve Wereda of Ethiopia using mono window, split window algorithm and spectral radiance model. Data in Brief, 27, 104773.

    Article  Google Scholar 

  • CGWB. (1993). Groundwater Resource and Development Potential of Alleppey (p. 88). CGWB: Kerala Region.

    Google Scholar 

  • Chomba, I. C., Banda, K. E., Winsemius, H. C., Eunice, M., Sichingabula, H. M., & Nyambe, I. A. (2022). Integrated hydrologic-hydrodynamic inundation modeling in a groundwater dependent tropical floodplain. Journal of Human, Earth, and Future, 3(2), 237–246.

    Article  Google Scholar 

  • Das, S. (2019). Comparison among influencing factor, frequency ratio, and analytical hierarchy process techniques for groundwater potential zonation in vaitarna basin, Maharashtra, India. Groundwater Sustainable Development, 8, 617–629. https://doi.org/10.1016/j.gsd.2019.03.003

    Article  Google Scholar 

  • Etuk, M. N., Igwe, O., & Egbueri, J. C. (2023). An integrated geoinformatics and hydrogeological approach to delineating groundwater potential zones in the complex geological terrain of Abuja Nigeria. Modeling Earth Systems and Environment, 9(1), 285–311.

    Article  Google Scholar 

  • Fentahun, A., Mechal, A., & Karuppannan, S. (2023). Hydrochemistry and quality appraisal of groundwater in Birr River Catchment, Central Blue Nile River Basin, using multivariate techniques and water quality indices. Environmental Monitoring and Assessment, 195(6), 655.

    Article  CAS  Google Scholar 

  • Ghanim, A. A., Al-Areeq, A. M., Benaafi, M., Al-Suwaiyan, M. S., Aghbari, A. A. A., & Alyami, M. (2023). Mapping groundwater potential zones in the habawnah basin of southern Saudi Arabia: An AHP-and GIS-based approach. Sustainability, 15(13), 10075.

    Article  Google Scholar 

  • Ghosh, D., Mandal, M., Karmakar, M., Banerjee, M., & Mandal, D. (2020). Application of geospatial technology for delineating groundwater potential zones in the Gandheswari watershed West Bengal. Sustainable Water Resources Management, 6, 14. https://doi.org/10.1007/s40899-020-00372-0

    Article  Google Scholar 

  • Glanville, K., Sheldon, F., Butler, D., & Capon, S. (2023). Effects and significance of groundwater for vegetation: A systematic review. Science of the Total Environment, 875, 162577.

    Article  CAS  Google Scholar 

  • Gleeson, T., & Richter, B. (2016). How much groundwater can we pump and protect environmental flows through time? presumptive standards for conjunctive management of aquifers and rivers. River Research and Applications, 34(1), 83–92. https://doi.org/10.1002/rra.3185

    Article  Google Scholar 

  • Guan, H., Huang, J., Li, L., Li, X., Miao, S., Su, W., & Huang, H. (2023). Improved Gaussian mixture model to map the flooded crops of VV and VH polarization data. Remote Sensing of Environment, 295, 113714. https://doi.org/10.1016/j.rse.2023.113714

    Article  Google Scholar 

  • Gupta, D., Yadav, S., Tyagi, D., & Tomar, L. (2018). Multi-criteria decision analysis for identifying of groundwater potential sites in Haridwar. Engineering Journal of Application. Scopes, 3, 9–15.

    Google Scholar 

  • Haji M., Qin D., Guo Y., Li L., Wang D., Karuppannan S., Shube H. 2021 Origin and geochemical evolution of groundwater in the Abaya Chamo basin of the Main Ethiopian Rift: application of multi-tracer approaches. Hydrogeology Journal, 29(3)

  • Haji, M., Karuppannan, S., Qin, D., Shube, H., & Kawo, N. S. (2021a). Potential human health risks due to groundwater fluoride contamination: A case study using multi-techniques approaches (GWQI, FPI, GIS River Basin of Southern, HHRA) in Bilate Main Ethiopian Rift, Ethiopia. Archives of Environmental Contamination and Toxicology, 80(1), 277–293.

    Article  CAS  Google Scholar 

  • He, M., Dong, J., Jin, Z., Liu, C., Xiao, J., Zhang, F., & Deng, L. (2021). Pedogenic processes in loess-paleosol sediments: Clues from Li isotopes of leachate in luochuan loess. Geochimica Et Cosmochimica Acta, 299, 151–162. https://doi.org/10.1016/j.gca.2021.02.021

    Article  CAS  Google Scholar 

  • Herbert, C., & Döll, P. (2019). Global assessment of current and future groundwater stress with a focus on transboundary aquifers. Water Resources Research, 55(6), 4760–4784.

    Article  Google Scholar 

  • Huang, H., Huang, J., Wu, Y., Zhuo, W., Song, J., Li, X., & Liang, S. (2023). The improved winter wheat yield estimation by assimilating GLASS LAI Into a crop growth model with the proposed bayesian posterior-based ensemble kalman filter. IEEE Transactions on Geoscience and Remote Sensing. https://doi.org/10.1109/TGRS.2023.3259742

    Article  Google Scholar 

  • Ibrahim-Bathis, K., & Ahmed, S. A. (2016). Geospatial technology for delineating groundwater potential zones in doddahalla watershed of Chitradurga district, India. Egyptian Journal of Remote Sensing Space Science, 19, 223–234. https://doi.org/10.1016/j.ejrs.2016.06.002

    Article  Google Scholar 

  • Ifediegwu, S. I. (2022). Assessment of groundwater potential zones using GIS and AHP techniques: A case study of the Lafia district, Nasarawa State Nigeria. Applied Water Science, 12(1), 1–17.

    Article  Google Scholar 

  • Islam, F., Tariq, A., Guluzade, R., Zhao, N., Shah, S. U., Ullah, M., & Aslam, M. (2023). Comparative analysis of GIS and RS based models for delineation of groundwater potential zone mapping. Geomatics, Natural Hazards and Risk, 14(1), 2216852.

    Article  Google Scholar 

  • Jha, M. K., Chowdary, V. M., & Chowdhury, A. (2010). Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeology Journal, 18, 1713–1728. https://doi.org/10.1007/s10040-010-0631-z

    Article  Google Scholar 

  • Jiao, Y., Zhu, G., Meng, G., Lu, S., Qiu, D., Lin, X., & Sun, N. (2023). Estimating non-productive water loss in irrigated farmland in arid oasis regions: Based on stable isotope data. Agricultural Water Management, 289, 108515. https://doi.org/10.1016/j.agwat.2023.108515

    Article  Google Scholar 

  • Karuppannan, S., & Kawo, N. S. (2019). Groundwater quality assessment using geospatial techniques and WQI in north east of Adama Town, Oromia region. Ethiopia. Hydrosp Anal, 3(1), 22–36.

    Article  Google Scholar 

  • Kawo, N. S., Hordofa, A. T., & Karuppannan, S. (2021). Performance evaluation of GPM-IMERG early and late rainfall estimates over lake hawassa catchment, Rift Valley Basin Ethiopia. Arabian Journal of Geosciences, 14(4), 256.

    Article  Google Scholar 

  • Kulkarni, H., Shah, M., & Shankar, V. P. S. (2015). Shaping the contours of groundwater governance in India. Journal of Hydrology. https://doi.org/10.1016/j.ejrh,4

    Article  Google Scholar 

  • Kundzewicz, Z. W., & Döll, P. (2009). Will groundwater ease freshwater stress under climate change. Hydrological Science Journal, 54(4), 665–675.

    Article  Google Scholar 

  • Li, Q., Lu, L., Zhao, Q., & Hu, S. (2023). Impact of Inorganic Solutes’ release in groundwater during oil shale in situ exploitation. Water, 15(1), 172. https://doi.org/10.3390/w15010172

    Article  CAS  Google Scholar 

  • Li, J., Wang, Z., Wu, X., Xu, C., Guo, S., & Chen, X. (2020). Toward monitoring short-term droughts using a novel daily scale, standardized antecedent precipitation evapotranspiration index. Journal of Hydrometeorology, 21(5), 891–908. https://doi.org/10.1175/JHM-D-19-0298.1

    Article  Google Scholar 

  • Li, R., Zhu, G., Lu, S., Sang, L., Meng, G., Chen, L., & Wang, Q. (2023). Effects of urbanization on the water cycle in the Shiyang River basin: based on a stable isotope method. Hydrology and Earth System Sciences, 27(24), 4437–4452. https://doi.org/10.5194/hess-27-4437-2023

    Article  Google Scholar 

  • Mandal, U., Sahoo, S., Munusamy, S. B., Dhar, A., Panda, S. N., Kar, A., & Mishra, P. K. (2016). Delineation of groundwater potential zones of coastal groundwater basin using multi-criteria decision-making technique. Water Resources Management, 30(12), 4293–4310.

    Article  Google Scholar 

  • Margat, J., & van der Gun, J. (2013). Groundwater around the world. CRC Press. https://doi.org/10.1201/b13977

    Book  Google Scholar 

  • Melkamu, T., Bagyaraj, M., Adimaw, M., Ngusie, A., & Karuppannan, S. (2022). Detecting and mapping flood inundation areas in Fogera-Dera Floodplain, Ethiopia during an extreme wet season using Sentinel-1 data. Physics and Chemistry of the Earth, Parts a/b/c, 127, 103189.

    Article  Google Scholar 

  • Mohamed, N. A., Wachemo, A. C., Karuppannan, S., & Duraisamy, K. (2022). Spatio-temporal variation of groundwater hydrochemistry and suitability for drinking and irrigation in Arba Minch Town, Ethiopia: An integrated approach using water quality index, multivariate statistics, and GIS. Urban Climate, 46, 101338.

    Article  Google Scholar 

  • Nguyen, T. G., Phan, K. A., & Huynh, T. H. N. (2022). Application of integrated-weight water quality index in groundwater quality evaluation. Civil Engineering Journal, 8(11), 2661–2674.

    Article  Google Scholar 

  • Nyakundi, R., Nyadawa, M., & Mwangi, J. (2022). Effect of recharge and abstraction on groundwater levels. Civil Engineering Journal, 8(5), 910–925.

    Article  Google Scholar 

  • Patil, S. G., & Mohite, N. M. (2014). Identifcation of groundwater recharge potential zones for a watershed using remote sensing and GIS. Internationl Journal of Geomatics and Geosciences, 4, 485–498.

    Google Scholar 

  • Pinto, D., Shrestha, S., Babel, M. S., & Ninsawat, S. (2017). Delineation of groundwater potential zones in the comoro watershed, timor leste using GIS, remote sensing and analytic hierarchy process (AHP) technique. Applied Water Science, 7, 503–519. https://doi.org/10.1007/s13201-015-0270-6

    Article  CAS  Google Scholar 

  • Rajaveni, S. P., Brindha, K., & Elango, L. (2017). Geological and geomorphological controls on groundwater occurrence in a hard rock region. Applied Water Science, 7(3), 1377–1389.

    Article  Google Scholar 

  • Ranganathan, M., Karuppannan, S., Murugasen, B., Brhane, G. K., & Panneerselvam, B. (2022). Assessment of groundwater prospective zone in Adigrat Town and its surrounding area using geospatial technology. Climate Change Impact on Groundwater Resources: Human Health Risk Assessment in Arid and Semi-arid Regions (pp. 387–405). Springer International Publishing.

    Chapter  Google Scholar 

  • Razandi, Y., Pourghasemi, H. R., Neisani, N. S., & Rahmati, O. (2015). Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8, 867–883. https://doi.org/10.1007/s12145-015-0220-8

    Article  Google Scholar 

  • Riley, S. J. (1999). Index that quantifes topographic heterogeneity. Intermountain Journal Sciences, 5, 23–27.

    Google Scholar 

  • Saaty, T.L. (1990). Decision making for leaders: the analytic hierarchy process for decisions in a complex world(RWS publications, 1990).

  • Sarkar, S. K., Esraz-Ul-Zannat, M., Das, P. C., & Ekram, K. M. M. (2022). Delineating the groundwater potential zones in Bangladesh. Water Supply, 22(4), 4500–4516.

    Article  Google Scholar 

  • Scanlon, B. R., Fakhreddine, S., Rateb, A., de Graaf, I., Famiglietti, J., Gleeson, T., & Zheng, C. (2023). Global water resources and the role of groundwater in a resilient water future. Nature Reviews Earth & Environment, 4(2), 87–101.

    Article  Google Scholar 

  • Senthil Kumar, G. R., & Shankar, K. (2014). Assessment of groundwater potential zones using GIS. Front Geosci, 2(1), 1–10.

    Google Scholar 

  • Shaji, E. (2013). Groundwater quality management in Kerala. Online International Interdisciplinary Research Journal, 3(3), 63–68.

    Google Scholar 

  • Siva, G., Nasir, N. & Selvakumar, R. (2017). Delineation of groundwater potential zone in Sengipatti for Thanjavur District using analytical hierarchy process. IOP Conference Series Earth Environ Science https://doi.org/10.1088/1755-1315/80/1/012063

  • Suhag, R. (2016). Overview of ground water in India. PRS Legislative Research, 9504, 12.

    Google Scholar 

  • Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., … Treidel, H. (2013). Ground water and climate change. Nature Climate Change, 3(4), 322–329. https://doi.org/10.1038/NCLIMATE1744

    Article  Google Scholar 

  • UNEP. (2022). Groundwater quality: measuring the invisible

  • Water and Related Statistics. (2015). Central Water Commission; PRS

  • Wen, Z., Shang, Y., Lyu, L., Tao, H., Liu, G., Fang, C., & Song, K. (2024). Re-estimating China’s lake CO2 flux considering spatiotemporal variability. Environmental Science and Ecotechnology, 19, 100337. https://doi.org/10.1016/j.ese.2023.100337

    Article  CAS  Google Scholar 

  • Wu, X., Guo, S., Qian, S., Wang, Z., Lai, C., Li, J., & Liu, P. (2022). Long-range precipitation forecast based on multipole and preceding fluctuations of sea surface temperature. International Journal of Climatology, 42(15), 8024–8039. https://doi.org/10.1002/joc.7690

    Article  Google Scholar 

  • Xi, Z., Xiaoming, Z., Jiawang, G., Shuxin, L., & Tingshan, Z. (2023). Karst topography paces the deposition of lower Permian, organic-rich, marine–continental transitional shales in the southeastern ordos basin, Northwestern China. AAPG Bulletin. https://doi.org/10.1306/11152322091

    Article  Google Scholar 

  • Yang, M., Wang, H., Hu, K., Yin, G., & Wei, Z. (2022). IA-Net $: $ An inception–attention-module-based network for classifying underwater images from others. IEEE Journal of Oceanic Engineering, 47(3), 704–717. https://doi.org/10.1109/JOE.2021.3126090

    Article  Google Scholar 

  • Yeh, H. F., Cheng, Y. S., Lin, H. I., & Lee, C. H. (2016). Mapping groundwater recharge potential zone using a GIS approach in Hualian River. Taiwan Sustain Environ Research, 26, 33–43.

    Article  CAS  Google Scholar 

  • Yıldırım, Ü. (2021). Identification of groundwater potential zones using GIS and multi-criteria decision-making techniques: A case study upper Coruh River basin (NE Turkey). ISPRS International Journal of Geo-Information, 10(6), 396.

    Article  Google Scholar 

  • Yin, L., Wang, L., Keim, B. D., Konsoer, K., Yin, Z., Liu, M., & Zheng, W. (2023). Spatial and wavelet analysis of precipitation and river discharge during operation of the three gorges dam China. Ecological Indicators, 154, 110837. https://doi.org/10.1016/j.ecolind.2023.110837

    Article  Google Scholar 

  • Yin, L., Wang, L., Li, T., Lu, S., Tian, J., Yin, Z., & Zheng, W. (2023). U-Net-LSTM: Time series-enhanced lake boundary prediction model. Land, 12(10), 1859. https://doi.org/10.3390/land12101859

    Article  Google Scholar 

  • Yin, L., Wang, L., Li, T., Lu, S., Yin, Z., Liu, X., & Zheng, W. (2023). U-Net-STN: A novel end-to-end lake boundary prediction model. Land, 12(8), 1602. https://doi.org/10.3390/land12081602

    Article  Google Scholar 

  • Zaresefat, M., & Derakhshani, R. (2023). Revolutionizing groundwater management with hybrid AI models: A practical review. Water, 15(9), 1750.

    Article  Google Scholar 

  • Zhang, S., Bai, X., Zhao, C., Tan, Q., Luo, G., Wang, J., & Xi, H. (2021). Global CO2 consumption by silicate rock chemical weathering: its past and future. Earth’s Future, 9(5), e1938E-e2020E. https://doi.org/10.1029/2020EF001938

    Article  Google Scholar 

  • Zhou, G., Lin, G., Liu, Z., Zhou, X., Li, W., Li, X., & Deng, R. (2023). An optical system for suppression of laser echo energy from the water surface on single-band bathymetric LiDAR. Optics and Lasers in Engineering, 163, 107468. https://doi.org/10.1016/j.optlaseng.2022.107468

    Article  Google Scholar 

  • Zhou, G., Su, S., Xu, J., Tian, Z., & Cao, Q. (2023). Bathymetry retrieval from spaceborne multispectral subsurface reflectance. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 2547–2558. https://doi.org/10.1109/JSTARS.2023.3249789

    Article  Google Scholar 

  • Zhou, G., Wu, G., Zhou, X., Xu, C., Zhao, D., Lin, J., & Zhang, L. (2023). Adaptive model for the water depth bias correction of bathymetric LiDAR point cloud data. International Journal of Applied Earth Observation and Geoinformation, 118, 103253. https://doi.org/10.1016/j.jag.2023.103253

    Article  Google Scholar 

Download references

Funding

No Funding was used in this study and the authors received no financial support for the research authorship and / or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

Selvam Sekar—Conceptualization; Data curation; Formal analysis; Funding acquisition; Methodology, Software, Investigation and Project administration. Akhila V. Nath– Writing—original draft; Data curation and Formal analysis; Validation and Visualization. Priyadarsi Debajyoti Roy- Formal analysis; Review and Editing; Methodology, Software, Investigation and Project administration. Sang Yong Chung- Investigation and Project administration. Hussam Eldin Elzain- Data curation and Formal analysis; Validation and Visualization. Paula Carvalho- Data curation and Formal analysis; Validation and Visualization. Muthukumar Perumal- Validation and Visualization. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Selvam Sekar.

Ethics declarations

Conflit of interest

The authors declare that they have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekar, S., Nath, A.V., Roy, P.D. et al. Identification of groundwater potential zones of Alappuzha (Kerala) in South India integrating AHP and GIS. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04952-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04952-4

Keywords

Navigation