Skip to main content
Log in

Leaf litter decomposition in different tree species of multifunctional agroforestry: decay constant and initial litter chemistry

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Litter decomposition is an important process that maintains soil fertility and enriches soil organic matter in agroforestry. They are highly influenced by tree density, age, timing, the quantity of litterfall, soil organisms, the chemical nature of the litter, and environmental conditions. An experiment was conducted in a multifunctional agroforestry model established in 2018 at Forest College & Research Institute, Mettupalayam, India. Based on litter fall, among 25 tree species, seventeen species were chosen to study litter decomposition and the relationship between decay rates, initial litter chemistry, and soil properties. A total of 153 litter bags each of 20 g samples were placed in soil and retrieved at 60, 120, 180, and 360 days to observe litter mass remaining and further analysed in laboratory for its properties. The results of decay rates revealed that the litter of Neolamarckia cadamba (3.03), Tectona grandis (2.85), Annona muricata (2.81), Moringa oleifera twigs (1.10) decomposed fast whereas Calophyllum inophyllum (0.86), Pterocarpus santalinus (1.02) and Melia dubia twigs (1.10) exhibited the lowest rate of decomposition. Calophyllum inophyllum takes 3.50 years while Neolamarckia cadamba takes only 0.99 years for decomposition of 95% of leaf litter. One-way ANOVA revealed significant differences among 17 tree species for initial leaf litter chemistry. Significantly negative correlation with lignin (−0.65) and lignin: nitrogen ratio (−0.56) implies that these parameters are strong predictors of the decomposition process. The soil organic carbon and other soil properties (pH, EC, N, P, K) was higher in the upper surface layer followed by a decreasing trend in the other soil depths. Holistically, diversified cropping mixture in multifunctional agroforestry contributed in improving soil fertility through decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are included in the manuscript under table section.

References

  • Aerts, R. (2006). The freezer defrosting: Global warming and litter decomposition rates in cold biomes. Journal of Ecology, 94, 713–724.

    Article  Google Scholar 

  • Akinyele, A. O., & Donald-Amaeshi, U. (2021). Leaf litter decomposition and nutrient release of three selected agroforestry tree species. Agroforestry Systems, 95(3), 559–570.

    Article  Google Scholar 

  • Akoto, D. S., Partey, S. T., Abugre, S., Akoto, S., Denich, M., Borgemeister, C., & Schmitt, C. B. (2022). Comparative analysis of leaf litter decomposition and nutrient release patterns of bamboo and traditional species in agroforestry system in Ghana. Cleaner Materials, 4, 100068.

    Article  CAS  Google Scholar 

  • AOAC. (1975). Official methods of analysis. AOAC International.

    Google Scholar 

  • Asigbaase, M., Dawoe, E., Lomax, B. H., & Sjogersten, S. (2021). Temporal changes in litterfall and potential nutrient return in cocoa agroforestry systems under organic and conventional management, Ghana. Heliyon, 7(10), 08051.

    Article  Google Scholar 

  • Bankole, O. A., Fawibe, O. O., Mwangi, N. P., & Gichua, K. M. (2023). Litter diversity improves litter fall and nutrients sustainability in an agroforestry system in a semi-arid ecosystem in Juja, Kenya. Journal of Research in Forestry, Wildlife and Environment, 15(2), 235–244.

    Google Scholar 

  • Barbhuiya, A. R., Arunachalam, A., Pandey, H. N., Arunachalam, K., Khan, M. L., & Nath, P. C. (2004). Dynamics of soil microbial biomass C, N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest. European Journal of Soil Biology, 40(3–4), 113–121.

    Article  CAS  Google Scholar 

  • Berg, B., Mc Claugherty, C. (2008). Initial litter chemical composition. Plant litter: decomposition, humus formation, carbon sequestration Springer verlag:53–83.

  • Berg, B., & McClaugherty, C. (2013). Decomposition, humus formation, carbon sequestration (3rd ed.). Springer.

    Google Scholar 

  • Bisht, V. K., Nautiyal, B. P., Kuniyal, C. P., Prasad, P., & Sundriyal, R. C. (2014). Litter production, decomposition, and nutrient release in subalpine forest communities of the Northwest Himalaya. Journal of Ecosystems. https://doi.org/10.1155/2014/294867

    Article  Google Scholar 

  • Bradford, M. A., Veen, G. F., Bonis, A., Bradford, E. M., Classen, A. T., Cornelissen, J. H. C., Crowther, T. W., De Long, J. R., Freschet, G. T., Kardol, P., Manrubia-Freixa, M., Maynard, D. S., Newman, G. S., Logtestijn, R. S. P., Viketoft, M., Wardle, D. A., Wieder, W. R., Wood, S. A., & van der Putten, W. H. (2017). A test of the hierarchical model of litter decomposition. Nature Ecology and Evolution, 1(12), 1836–1845.

    Article  PubMed  Google Scholar 

  • Canessa, R., Van den Brink, L., Saldaña, A., Rios, R. S., Hättenschwiler, S., Mueller, C. W., Prater, I., Tielbörger, K., & Bader, M. Y. (2021). Relative effects of climate and litter traits on decomposition change with time, climate and trait variability. Journal of Ecology, 109(1), 447–458.

    Article  Google Scholar 

  • Celentano, D., Zahawi, R. A., Finegan, B., Ostertag, R., Cole, R. J., & Holl, K. D. (2011). Litterfall dynamics under different tropical forest restoration strategies in Costa Rica. Biotropica, 43, 279–287. https://doi.org/10.1111/j.1744-7429.2010.00688.x

    Article  Google Scholar 

  • Dawoe, E. K., Isaac, M. E., & Quashie-Sam, J. (2010). Litterfall and litter nutrient dynamics under cocoa ecosystems in lowland humid Ghana. Plant and Soil, 330(1), 55–64.

    Article  CAS  Google Scholar 

  • Dhanya, B., Viswanath, S., & Purushothaman, S. (2013). Decomposition and nutrient release dynamics of Ficus benghalensis L. litter in traditional agroforestry systems of Karnataka, Southern India. International Scholarly Research Notices. https://doi.org/10.1155/2013/524679

    Article  Google Scholar 

  • Dollinger, J., & Jose, S. (2018). Agroforestry for soil health. Agroforestry Systems, 92(2), 213–219.

    Article  Google Scholar 

  • Effland, M. J. (1977). Modified procedure to determine acid insoluble lignin in wood and pulp. TAPPI, 60, 143–144.

    CAS  Google Scholar 

  • Esperschütz, J., Zimmermann, C., Dümig, A., Welzl, G., Buegger, F., Elmer, M., Munch, J. C., & Schloter, M. (2013). Dynamics of microbial communities during decomposition of litter from pioneering plants in initial soil ecosystems. Biogeosciences, 10(7), 5115–5124.

    Article  ADS  Google Scholar 

  • Getaneh, S., Honnay, O., Desie, E., Helsen, K., Couck, L., Shibru, S., & Muys, B. (2022). Impact of tree litter identity, litter diversity and habitat quality on litter decomposition rates in tropical moist evergreen forest. Forest Ecosystems, 9, 100023.

    Article  Google Scholar 

  • Gill, A. S., & Burman, D. (2002). Production management of field crops in agroforestry systems. Recent advances in Agronomy, 1, 523–542.

    Google Scholar 

  • Hossain, M., Siddique, M. R. H., Rahman, M. S., Hossain, M. Z., & Hasan, M. M. (2011). Nutrient dynamics associated with leaf litter decomposition of three agroforestry tree species (Azadirachta indica, Dalbergia sissoo, and Melia azedarach) of Bangladesh. Journal of Forestry Research, 22(4), 577–582.

    Article  CAS  Google Scholar 

  • Hou, S. L., & Lu, X. T. (2021). Mixing effects of litter decomposition at plant organ and species levels in a temperate grassland. Plant and Soil, 459, 387–396.

    Article  CAS  Google Scholar 

  • Hu, D., Wang, M., Zheng, Y., Lv, M., Zhu, G., Zhong, Q., & Cheng, D. (2021). Leaf litter phosphorus regulates the soil meso-and micro-faunal contribution to home-field advantage effects on litter decomposition along elevation gradients. Catena, 1(207), 105673.

    Article  Google Scholar 

  • Imayavaramban, V., Singaravel, R., & Thanunathan, K. (2001). Study on the soil fertility enrichment under Leucaena leucocephala plantation. Industrial Journal forestry, 24, 478–479.

    Google Scholar 

  • Isaac, S. R., & Nair, M. S. (2005). Biodegradation of leaf litter in the warm humid tropics of Kerala, India. Soil Biology and Biochemistry, 37(9), 1656–1664.

    Article  CAS  Google Scholar 

  • Isaac, S. R., & Nair, M. A. (2006). Litter dynamics of six multipurpose trees in a homegarden in southern Kerala, India. Agroforestry Systems, 67(3), 203–213.

    Article  Google Scholar 

  • Jackson, M. L. (2005). Soil chemical analysis: Advanced course. UW-Madison Libraries parallel press.

    Google Scholar 

  • Jamaludheen, V., & Kumar, B. M. (1999). Litter of multipurpose trees in Kerala, India: Variations in the amount, quality, decay rates and release of nutrients. Forest Ecology and Management, 115(1), 1–11.

    Article  Google Scholar 

  • Jia, B. R., Sun, H. R., Yu, W. Y., et al. (2020). Quantifying the interannual litterfall variations in china’s forest ecosystems. Journal Plant Ecology, 13, 266–272.

    Article  ADS  Google Scholar 

  • King, J. Y., Brandt, L. A., & Adair, E. C. (2012). Shedding light on plant litter decomposition: Advances, implications and new directions in understanding the role of photodegradation. Biogeochemistry, 111, 57–81.

    Article  Google Scholar 

  • Krishna, M. P., & Mohan, M. (2017). Litter decomposition in forest ecosystems: A review. Energy, Ecology and Environment, 2, 236–249.

    Article  Google Scholar 

  • Mahmood, H., Limon, S. H., Rahman, M. S., Azad, A. K., Islam, M. S., & Khairuzzaman, M. (2009). Nutrients (N, P and K) dynamics associated with the leaf litter of two agroforestry tree species of Bangladesh. iForest, 2, 183–186.

    Article  Google Scholar 

  • Mahmood, H., & Saberi, O. (2007). Micro-nutrient contents of field grown seedlings, saplings and trees of a mangrove species Bruguiera parviflora (Wight and Arnold) in the Kuala Selangor Nature Park, Malaysia. Indian Forester, 133, 1057–1062.

    Google Scholar 

  • Negash, M., & Starr, M. (2021). Litter decomposition of six tree species on indigenous agroforestry farms in South-Eastern Ethiopia in relation to litterfall carbon inputs and modelled soil respiration. Agroforestry Systems, 95(4), 755–766.

    Article  Google Scholar 

  • Olsen, S. R., Cole, C. V., & Dean, L. A. (1954). Estimation of available phosphorus in soil by extraction with sodium carbonate. In C. A. Black (Ed.), Methods of soil analysis, Part2 (pp. 1044–1046). American Society of Agronomy Inc.

    Google Scholar 

  • Olson, J. S. (1963). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44(2), 322–331.

    Article  Google Scholar 

  • Parthiban, K. T., Srivastava, D., & Keerthika, A. (2021). Design and development of multifunctional agroforestry for family farming. Current Science, 120(1), 27–28.

    Google Scholar 

  • Pérez-Harguindeguy, N., Díaz, S., Cornelissen, J. H. C., Vendramini, F., Cabido, M., & Castellanos, A. (2000). Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant and Soil, 218(1), 21–30.

    Article  Google Scholar 

  • Rahman, M. M., Tsukamoto, J., Rahman, M. M., Yoneyama, A., & Mostafa, K. M. (2013). Lignin and its effects on litter decomposition in forest ecosystems. Chemistry and Ecology, 29(6), 540–553.

    Article  CAS  Google Scholar 

  • Regina, I. S. (2001). Litter fall, decomposition and nutrient release in three semi-arid forests of the Duero basin, Spain. Forestry, 74(4), 347–358.

    Article  Google Scholar 

  • Saputra, D. D., Sari, R. R., Hairiah, K., Roshetko, J. M., Suprayogo, D., & Van Noordwijk, M. (2020). Can cocoa agroforestry restore degraded soil structure following conversion from forest to agricultural use? Agrofor Systems, 94, 2261–2276. https://doi.org/10.1007/s10457-020-00548-9

    Article  Google Scholar 

  • Sari, R. R., Rozendaal, D., Saputra, D. D., Hairiah, K., Roshetko, J. M., & Van Noordwijk, M. (2022). Balancing litterfall and decomposition in cacao agroforestry systems. Plant and Soil, 473(1), 251–271.

    Article  CAS  Google Scholar 

  • Schilling, E. M., Waring, B. G., Schilling, J. S., & Powers, J. S. (2016). Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest. Oecologia, 182, 287–297. https://doi.org/10.1007/s00442-016-3662-x

    Article  ADS  PubMed  Google Scholar 

  • Semwal, R. L., Maikhuri, R. K., Rao, K. S., Sen, K. K., & Saxena, K. G. (2003). Leaf litter decomposition and nutrient release patterns of six multipurpose tree species of central Himalaya, India. Biomass and Bioenergy, 24(1), 3–11.

    Article  CAS  Google Scholar 

  • Shanmughavel, P., Peddappaiah, R. S., & Muthukumar, T. (2000). Litter production and nutrient return in Bambusa bambos plantation. Journal of Sustainable Forestry, 11(3), 71–82.

    Article  Google Scholar 

  • Solanki, R., & Arora, S. (2015). Leaf litter dynamics in agroforestry system affecting microbial activity in saline soils. Journal of Soil and Water Conservation, 14(4), 333–339.

    Google Scholar 

  • Stoler, A. B., Burke, D. J., & Relyea, R. A. (2016). Litter chemistry and chemical diversity drive ecosystem processes in forest ponds. Ecology, 97, 1783–1795.

    Article  PubMed  Google Scholar 

  • Su, Y., Le, J., Ma, X., et al. (2021). Soil burial has a greater effect on litter decomposition rate than nitrogen enrichment in alpine grasslands. Journal Plant Ecology, 14, 1047–1059.

    Article  Google Scholar 

  • Subbaiah, B. V., & Asija, G. L. (1956). A rapid procedure for estimation of available nitrogen in soil. Current Science, 25, 259–260.

    Google Scholar 

  • Szanser, M., Ilieva-Makulec, K., Kajak, A., et al. (2001). Impact of litter species diversity on decomposition processes and communities of soil organisms. Soil Biology and Biochemistry, 43, 9–19.

    Article  Google Scholar 

  • Taylor, B. R., Parkinson, D., & Parsons, W. F. (1989). Nitrogen and lignin content as predictors of litter decay rates: A microcosm test. Ecology, 70(1), 97–104.

    Article  Google Scholar 

  • Ventura, M., Scandellari, F., Bonora, E., & Tagliavini, M. (2010b). Nutrient release during decomposition of leaf litter in a peach (Prunus persica L.) orchard. Nutrient Cycling in Agroecosystems, 87, 115–125.

    Article  Google Scholar 

  • Ventura, M., Scandellari, F., Bonora, E., & Tagliavini, T. (2010). Nutrient release during decomposition of leaf litter in a peach (Prunus persica L.) orchard. Nutrient cycling in agroecosystems, 87(1), 115–125.

    Article  Google Scholar 

  • Verhoef, H. A., & Gunadi, B. (2002). Decomposition dynamics and nutrient flow in pine forest plantation in Central Java (pp. 173–211). Science Publishers.

    Google Scholar 

  • Verma, A., Kumar, P., Soni, M. L., Pawar, N., Pradhan, U., Tanwar, S. P. S., & Kumar, S. (2022). Litter production and litter dynamics in different agroforestry systems in the arid western region of India. Biological Agriculture and Horticulture, 38(1), 40–60.

    Article  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.

    Article  ADS  CAS  Google Scholar 

  • Wardle, D. A., Yeates, G. W., Barker, G. M., & Bonner, K. I. (2006). The influence of plant litter diversity on decomposer abundance and diversity. Soil biology and Biochemistry, 38(5), 1052–1062.

    Article  CAS  Google Scholar 

  • Yang, K., Zhu, J., Zhang, W., Zhang, Q., Lu, D., Zhang, Y., & Wang, G. G. (2022). Litter decomposition and nutrient release from monospecific and mixed litters: Comparisons of litter quality, fauna and decomposition site effects. Journal of Ecology, 110(7), 1673–1686.

    Article  CAS  Google Scholar 

  • Yue, K., Garcia-Palacios, P., Parsons, S. A., et al. (2018). Assessing the temporal dynamics of aquatic and terrestrial litter decomposition in an alpine forest. Functional Ecology, 32, 2464–2475.

    Article  Google Scholar 

  • Zhao, Y. Y., Li, Z. T., Xu, T., & Lou, A. R. (2022). Leaf litter decomposition characteristics and controlling factors across two contrasting forest types. Journal of Plant Ecology, 15(6), 1285–1301.

    Article  Google Scholar 

  • Zukswert, J. M., & Prescott, C. E. (2017). Relationships among leaf functional traits, litter traits, and mass loss during early phases of leaf litter decomposition in 12 woody plant species. Oecologia, 185(2), 305–316.

    Article  ADS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Keerthika.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keerthika, A., Parthiban, K.T., Chavan, S.B. et al. Leaf litter decomposition in different tree species of multifunctional agroforestry: decay constant and initial litter chemistry. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04536-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04536-2

Keywords

Navigation