Skip to main content

Advertisement

Log in

Hydrological alteration and its effect on the eco-hydrological state in Tangon river traversing Bangladesh and India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The present study highlighted the multi-temporal behavior of hydrological alteration (HA) of a river mainly triggered by damming over the Tangon river of India and Bangladesh in 1989 and its impact on eco-hydrological health. For measuring hydrological alteration, hydrological variability at month scale, diurnal flow change using histogram comparison approach (HCA), degree of alteration using a heat map, and periodicity analysis using wavelet transformation method were used. The present study used hydro-ecological matrices like the range of variability approach (RVA), eco-deficit/eco-surplus, and degree of impact (ImHA) using 33 indicators of HA (IHA) for hydro-ecological assessment. Apart from this, the present study endorsed a new approach (integrated degree of impact due to HA (IImHA)) for accounting for integrated hydro-ecological impact in an altered river. The results following hydrological and eco-hydrological alterations were derived in the post-dam period: (1) monthly water level (WL) was attenuated by 1.5–3.0 m. (2) monthly variability of flow increased by 10%, (3) degree of negative HA ranged from 10 to 23% with high during non-monsoon months, (4) statistically significant periodicity (5% level) in flow spectrum was identified after the dam, (5) HCA revealed that diurnal flow distribution turned form positive to negatively skewed pattern (6) RVA-based monthly failure rate ranges from 13.95 to 25.58%, (7) ImHA of different IHA groups ranged from 0.46 to 0.56 signifying poor to moderate impact, and (8) proposed IImHA value accounted (0.406) moderate degree of ecological impact. The study recommends to apply IImHA in such similar works for making the study effective and instrumental. The findings of this study would be effective for the policymakers specially for the restoration of flow and ecological health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support to fulfill of this present study are available from the corresponding author, upon reasonable request.

References

  • Abdelhaleem, F. S., Amin, A. M., & Helal, E. Y. (2021). Mean flow velocity in the Nile River, Egypt: An overview of empirical equations and modification for low-flow regimes. Hydrological Sciences Journal, 66(2), 239–251.

    Article  Google Scholar 

  • Adel, M. M. (2012). Downstream ecocide from upstream water piracy. American Journal of Environmental Sciences, 8(5), 528.

    Article  Google Scholar 

  • Aladağ, E. (2021). Forecasting of particulate matter with a hybrid ARIMA model based on wavelet transformation and seasonal adjustment. Urban Climate, 39, 100930.

    Article  Google Scholar 

  • Ali, R., Kuriqi, A., Abubaker, S., & Kisi, O. (2019a). Hydrologic alteration at the upper and middle part of the Yangtze River, China: Towards sustainable water resource management under increasing water exploitation. Sustainability, 11(19), 5176.

    Article  Google Scholar 

  • Ali, R., Kuriqi, A., Abubaker, S., & Kisi, O. (2019b). Long-term trends and seasonality detection of the observed flow in Yangtze River using Mann-Kendall and Sen’s innovative trend method. Water, 11(9), 1855.

    Article  Google Scholar 

  • Alifujiang, Y., Abuduwaili, J., Groll, M., Issanova, G., & Maihemuti, B. (2021). Changes in intra-annual runoff and its response to climate variability and anthropogenic activity in the Lake Issyk-Kul Basin, Kyrgyzstan. CATENA, 198, 104974.

    Article  Google Scholar 

  • Amenuvor, M., Gao, W., Li, D., & Shao, D. (2020). Effects of dam regulation on the hydrological alteration and morphological evolution of the Volta River Delta. Water, 12(3), 646.

    Article  Google Scholar 

  • Basheer, M., Sulieman, R., & Ribbe, L. (2019). Exploring management approaches for water and energy in the data-scarce Tekeze-Atbara Basin under hydrologic uncertainty. International Journal of Water Resources Development.

  • Burgan, H. I., & Aksoy, H. (2022). Daily flow duration curve model for ungauged intermittent subbasins of gauged rivers. Journal of Hydrology, 604, 127249.

    Article  Google Scholar 

  • Chaudhari, S., Pokhrel, Y., Moran, E., & Miguez-Macho, G. (2019). Multi-decadal hydrologic change and variability in the Amazon River basin: Understanding terrestrial water storage variations and drought characteristics. Hydrology and Earth System Sciences, 23(7), 2841–2862.

    Article  Google Scholar 

  • Chou, S. Y., Dewabharata, A., Zulvia, F. E., & Fadil, M. (2022). Forecasting building energy consumption using ensemble empirical mode decomposition, wavelet transformation, and long short-term memory algorithms. Energies, 15(3), 1035.

    Article  Google Scholar 

  • Cuddy, J. D., & Della Valle, P. A. (1978). Measuring the instability of time series data. Oxford Bulletin of Economics and Statistics, 40(1), 79–85.

    Article  Google Scholar 

  • Cui, T., Tian, F., Yang, T., Wen, J., & Khan, M. Y. A. (2020). Development of a comprehensive framework for assessing the impacts of climate change and dam construction on flow regimes. Journal of Hydrology, 590, 125358.

    Article  Google Scholar 

  • Daiechini, F., Vafakhah, M., & Moosavi, V. (2020). Impacts of the Golestan and Voshmgir dams on indicators of hydrologic alterations in the Gorganroud river using range of variability approach. Iranian Journal of Ecohydrology, 7(3), 595–607.

    Google Scholar 

  • DeHaan, H., Stamper, J., & Walters, B. (2012). Mississippi River and Tributaries System 2011 post-flood report: Documenting the 2011 Flood, the Corps’ response, and the performance of the MR&T System.

  • Dong, Q., Fang, D., Zuo, J., & Wang, Y. (2019). Hydrological alteration of the upper Yangtze River and its possible links with large-scale climate indices. Hydrology Research, 50(4), 1120–1137.

    Article  Google Scholar 

  • Figueiredo-Vázquez, C., Lourenço, A., & Velo-Antón, G. (2021). Riverine barriers to gene flow in a salamander with both aquatic and terrestrial reproduction. Evolutionary Ecology, 35(3), 483–511.

    Article  Google Scholar 

  • Gain, A. K., & Giupponi, C. (2014). Impact of the Farakka Dam on thresholds of the hydrologic flow regime in the Lower Ganges River Basin (Bangladesh). Water, 6(8), 2501–2518.

    Article  Google Scholar 

  • Gao, Y., Vogel, R. M., Kroll, C. N., Poff, N. L., & Olden, J. D. (2009). Development of representative indicators of hydrologic alteration. Journal of Hydrology, 374(1–2), 136–147.

    Article  Google Scholar 

  • Ge, J., Peng, W., Huang, W., Qu, X., & Singh, S. K. (2018). Quantitative assessment of flow regime alteration using a revised range of variability methods. Water, 10(5), 597.

    Article  Google Scholar 

  • George, R., McManamay, R., Perry, D., Sabo, J., & Ruddell, B. L. (2021). Indicators of hydro-ecological alteration for the rivers of the United States. Ecological Indicators, 120, 106908.

    Article  Google Scholar 

  • Ghosh, S., & Guchhait, S. K. (2016). Dam-induced changes in flood hydrology and flood frequency of tropical river: A study in Damodar River of West Bengal, India. Arabian Journal of Geosciences, 9, 1–26.

    Article  Google Scholar 

  • Gierszewski, P. J., Habel, M., Szmańda, J., & Luc, M. (2020). Evaluating effects of dam operation on flow regimes and riverbed adaptation to those changes. Science of the Total Environment, 710, 136202.

    Article  CAS  Google Scholar 

  • Girihagama, L., Naveed Khaliq, M., Lamontagne, P., Perdikaris, J., Roy, R., Sushama, L., & Elshorbagy, A. (2022). Streamflow modelling and forecasting for Canadian watersheds using LSTM networks with attention mechanism. Neural Computing and Applications, 34(22), 19995–20015.

    Article  Google Scholar 

  • Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11(5/6), 561–566.

    Article  Google Scholar 

  • Guo, H., Hu, Q., Zhang, Q., & Feng, S. (2012). Effects of the three gorges dam on Yangtze river flow and river interaction with Poyang Lake, China: 2003–2008. Journal of Hydrology, 416, 19–27.

    Article  Google Scholar 

  • Hecht, J. S., Lacombe, G., Arias, M. E., Dang, T. D., & Piman, T. (2019). Hydropower dams of the Mekong River basin: A review of their hydrological impacts. Journal of Hydrology, 568, 285–300.

    Article  Google Scholar 

  • Hossain, M. A., & Haque, M. A. (2005). Fish species composition in the river Padma near Rajshahi. Journal of Life and Earth Science, 1(1), 35–42.

    Google Scholar 

  • Huang, F., Li, F., Zhang, N., Chen, Q., Qian, B., Guo, L., & Xia, Z. (2017). A histogram comparison approach for assessing hydrologic regime alteration. River Research and Applications, 33(5), 809–822.

    Article  Google Scholar 

  • Jia, L., Li, K., Shi, X., Zhao, L., & Linghu, J. (2021). Application of gas wettability alteration to improve methane drainage performance: A case study. International Journal of Mining Science and Technology, 31(4), 621–629.

    Article  CAS  Google Scholar 

  • Kambalimath, S. S., & Deka, P. C. (2021). Performance enhancement of SVM model using discrete wavelet transform for daily streamflow forecasting. Environmental Earth Sciences, 80(3), 1–16.

    Article  Google Scholar 

  • Khan, I., & Zhao, M. (2019). Water resource management and public preferences for water ecosystem services: A choice experiment approach for inland river basin management. Science of the Total Environment, 646, 821–831.

    Article  CAS  Google Scholar 

  • Khatun, R., & Pal, S. (2021). Effects of hydrological modification on fish habitability in riparian flood plain river basin. Ecological Informatics, 65, 101398.

    Article  Google Scholar 

  • Khatun, R., Talukdar, S., Pal, S., & Kundu, S. (2021). Measuring dam induced alteration in water richness and eco-hydrological deficit in flood plain wetland. Journal of Environmental Management, 285, 112157.

    Article  Google Scholar 

  • Khazaee Poul, A., Shourian, M., & Ebrahimi, H. (2019). A comparative study of MLR, KNN, ANN and ANFIS models with wavelet transform in monthly stream flow prediction. Water Resources Management, 33(8), 2907–2923.

    Article  Google Scholar 

  • Kim, Z., & Singh, V. P. (2014). Assessment of environmental flow requirements by entropy-based multi-criteria decision. Water Resources Management, 28(2), 459–474.

    Article  Google Scholar 

  • Kundu, S., Pal, S., Talukdar, S., Mahato, S., & Singha, P. (2022). Integration of satellite image-derived temperature and water depth for assessing fish habitability in dam controlled flood plain wetland. Environmental Science and Pollution Research, 25, 1–15.

    Google Scholar 

  • Kuriqi, A., Pinheiro, A. N., Sordo-Ward, A., & Garrote, L. (2019). Influence of hydrologically based environmental flow methods on flow alteration and energy production in a run-of-river hydropower plant. Journal of Cleaner Production, 232, 1028–1042.

    Article  Google Scholar 

  • Langat, P. K., Kumar, L., Koech, R., & Ghosh, M. K. (2019). Hydro-morphological characteristics using flow duration curve, historical data and remote sensing: Effects of land use and climate. Water, 11(2), 309.

    Article  Google Scholar 

  • Larsen, A., Larsen, J. R., & Lane, S. N. (2021). Dam builders and their works: Beaver influences on the structure and function of river corridor hydrology, geomorphology, biogeochemistry and ecosystems. Earth-Science Reviews, 218, 103623.

    Article  CAS  Google Scholar 

  • Laub, B. G., Baker, D. W., Bledsoe, B. P., & Palmer, M. A. (2012). Range of variability of channel complexity in urban, restored and forested reference streams. Freshwater Biology, 57(5), 1076–1095.

    Article  Google Scholar 

  • Li, D., Long, D., Zhao, J., Lu, H., & Hong, Y. (2017). Observed changes in flow regimes in the Mekong River basin. Journal of Hydrology, 551, 217–232.

    Article  Google Scholar 

  • Lu, W., Lei, H., Yang, D., Tang, L., & Miao, Q. (2018). Quantifying the impacts of small dam construction on hydrological alterations in the Jiulong River basin of Southeast China. Journal of Hydrology, 567, 382–392.

    Article  Google Scholar 

  • Mathews, R., & Richter, B. D. (2007). Application of the Indicators of hydrologic alteration software in environmental flow setting 1. JAWRA Journal of the American Water Resources Association, 43(6), 1400–1413.

    Article  Google Scholar 

  • Meng, W., He, M., Hu, B., Mo, X., Li, H., Liu, B., & Wang, Z. (2017). Status of wetlands in China: A review of extent, degradation, issues and recommendations for improvement. Ocean & Coastal Management, 146, 50–59.

    Article  Google Scholar 

  • Mezger, G., del Tánago, M. G., & De Stefano, L. (2021). Environmental flows and the mitigation of hydrological alteration downstream from dams: The Spanish case. Journal of Hydrology, 598, 125732.

    Article  Google Scholar 

  • Mohammed, I. N., Bolten, J. D., Srinivasan, R., & Lakshmi, V. (2018). Satellite observations and modeling to understand the Lower Mekong River Basin streamflow variability. Journal of Hydrology, 564, 559–573.

    Article  Google Scholar 

  • Momblanch, A., Papadimitriou, L., Jain, S. K., Kulkarni, A., Ojha, C. S., Adeloye, A. J., & Holman, I. P. (2019). Untangling the water-food-energy-environment nexus for global change adaptation in a complex Himalayan water resource system. Science of the Total Environment, 655, 35–47.

    Article  CAS  Google Scholar 

  • Morin, K. A. (2019). Application of spectral analysis and wavelet transforms to full-scale dynamic drainages at mine sites. SN Applied Sciences, 1(9), 1–25.

    Article  Google Scholar 

  • Morlet, J., Arens, G., Fourgeau, E., & Giard, D. (1982). Wave propagation and sampling theory—Part II: Sampling theory and complex waves. Geophysics, 47(2), 222–236.

    Article  Google Scholar 

  • Mouatadid, S., Adamowski, J. F., Tiwari, M. K., & Quilty, J. M. (2019). Coupling the maximum overlap discrete wavelet transform and long short-term memory networks for irrigation flow forecasting. Agricultural Water Management, 219, 72–85.

    Article  Google Scholar 

  • Ngor, P. B., Legendre, P., Oberdorff, T., & Lek, S. (2018). Flow alterations by dams shaped fish assemblage dynamics in the complex Mekong-3S river system. Ecological Indicators, 88, 103–114.

    Article  Google Scholar 

  • Nowreen, S., Haque, P., Mondal, M. S., & Zzaman, R. U. (2020). Hydrological assessment for the availability of water for off-stream uses of Karatoa-Atrai River in Bangladesh. Water Policy, 22(1), 70–84.

    Article  Google Scholar 

  • Pal, S. (2016). Impact of water diversion on hydrological regime of the Atreyee river of Indo-Bangladesh. International Journal of River Basin Management, 14(4), 459–475.

    Article  Google Scholar 

  • Pal, S., & Khatun, R. (2022). Image driven hydrological components-based fish habitability modeling in Riparian Wetlands triggered by damming. Wetlands, 42(1), 1–13.

    Article  Google Scholar 

  • Pal, S., Saha, A., & Das, T. (2019). Analysis of flow modifications and stress in the Tangon river basin of the Barind tract. International Journal of River Basin Management, 17(3), 301–321.

    Article  Google Scholar 

  • Pal, S., & Saha, T. K. (2017). Exploring drainage/relief-scape sub-units in Atreyee river basin of India and Bangladesh. Spatial Information Research, 25(5), 685–692.

    Article  Google Scholar 

  • Pal, S., & Saha, T. K. (2018). Identifying dam-induced wetland changes using an inundation frequency approach: The case of the Atreyee River basin of Indo-Bangladesh. Ecohydrology & Hydrobiology, 18(1), 66–81.

    Article  Google Scholar 

  • Pal, S., & Sarda, R. (2020). Damming effects on the degree of hydrological alteration and stability of wetland in lower Atreyee River basin. Ecological Indicators, 116, 106542.

    Article  Google Scholar 

  • Pal, S., & Sarda, R. (2021). Measuring the degree of hydrological variability of riparian wetland using hydrological attributes integration (HAI) histogram comparison approach (HCA) and range of variability approach (RVA). Ecological Indicators, 120, 106966.

    Article  Google Scholar 

  • Pal, S., Sarkar, R., & Saha, T. K. (2022). Exploring the forms of wetland modifications and investigating the causes in lower Atreyee river floodplain area. Ecological Informatics, 67, 101494.

    Article  Google Scholar 

  • Pal, S., & Singha, P. (2022). Linking river flow modification with wetland hydrological instability, habitat condition, and ecological responses. Environmental Science and Pollution Research, 879, 1–27.

    Google Scholar 

  • Pal, S., & Talukdar, S. (2020). Modelling seasonal flow regime and environmental flow in Punarbhaba river of India and Bangladesh. Journal of Cleaner Production, 252, 119724.

    Article  Google Scholar 

  • Palmer, M., & Ruhi, A. (2019). Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science, 365(6459), eaaw2087.

    Article  CAS  Google Scholar 

  • Peñas, F. J., & Barquín, J. (2019). Assessment of large-scale patterns of hydrological alteration caused by dams. Journal of Hydrology, 572, 706–718.

    Article  Google Scholar 

  • Pirnia, A., Golshan, M., Darabi, H., Adamowski, J., & Rozbeh, S. (2019). Using the Mann-Kendall test and double mass curve method to explore streamflow changes in response to climate and human activities. Journal of Water and Climate Change, 10(4), 725–742.

    Article  Google Scholar 

  • Poff, N. L., Richter, B. D., Arthington, A. H., Bunn, S. E., Naiman, R. J., Kendy, E., et al. (2010). The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology, 55(1), 147–170.

    Article  Google Scholar 

  • Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., & Hyndman, D. W. (2018). A review of the integrated effects of changing climate, land use, and dams on Mekong river hydrology. Water, 10(3), 266.

    Article  Google Scholar 

  • Ren, K., Huang, S., Huang, Q., Wang, H., Leng, G., Cheng, L., et al. (2019). A nature-based reservoir optimization model for resolving the conflict in human water demand and riverine ecosystem protection. Journal of Cleaner Production, 231, 406–418.

    Article  Google Scholar 

  • Rhif, M., Ben Abbes, A., Farah, I. R., Martínez, B., & Sang, Y. (2019). Wavelet transform application for/in non-stationary time-series analysis: A review. Applied Sciences, 9(7), 1345.

    Article  Google Scholar 

  • Richter, B. D., Baumgartner, J. V., Powell, J., & Braun, D. P. (1996). A method for assessing hydrologic alteration within ecosystems. Conservation Biology, 10(4), 1163–1174.

    Article  Google Scholar 

  • Richter, B., Baumgartner, J., Wigington, R., & Braun, D. (1997). How much water does a river need? Freshwater Biology, 37(1), 231–249.

    Article  Google Scholar 

  • Rideout, N. K., Lapen, D. R., Peters, D. L., & Baird, D. J. (2021). Ditch the low flow: Agricultural impacts on flow regimes and consequences for aquatic ecosystem functions. Ecohydrology, 789, e2364.

    Google Scholar 

  • Roland II, V. L., & Crowley-Ornelas, E. (2022). Investigating hydrologic alteration in the Pearl and Pascagoula river basins using rule-based model trees. Environmental Modelling & Software, 105322.

  • Sabater, S., Elosegi, A., & Ludwig, R. (Eds.). (2018). Multiple stressors in river ecosystems: Status, impacts and prospects for the future. Elsevier.

    Google Scholar 

  • Saha, T. K., Pal, S., & Sarda, R. (2022). Impact of river flow modification on wetland hydrological and morphological characters. Environmental Science and Pollution Research, 29(50), 75769–75789.

    Article  Google Scholar 

  • Santos, C. A. G., Guerra-Gomes, I. C., Gois, B. M., Peixoto, R. F., Keesen, T. S. L., & da Silva, R. M. (2019). Correlation of dengue incidence and rainfall occurrence using wavelet transform for João Pessoa city. Science of the Total Environment, 647, 794–805.

    Article  CAS  Google Scholar 

  • Santos, R. E., Pinto-Coelho, R. M., Fonseca, R., Simões, N. R., & Zanchi, F. B. (2018). The decline of fisheries on the Madeira River, Brazil: The high cost of the hydroelectric dams in the Amazon Basin. Fisheries Management and Ecology, 25(5), 380–391.

    Article  Google Scholar 

  • Scholte, S. S., Todorova, M., Van Teeffelen, A. J., & Verburg, P. H. (2016). Public support for wetland restoration: What is the link with ecosystem service values? Wetlands, 36(3), 467–481.

    Article  Google Scholar 

  • Shahid, M., Cong, Z., & Zhang, D. (2018). Understanding the impacts of climate change and human activities on streamflow: A case study of the Soan River basin. Pakistan. Theoretical and Applied Climatology, 134(1), 205–219.

    Article  Google Scholar 

  • Shiau, J. T., & Wu, F. C. (2008). A histogram matching approach for assessment of flow regime alteration: Application to environmental flow optimization. River Research and Applications, 24(7), 914–928.

    Article  Google Scholar 

  • Singh, R. K., & Jain, M. K. (2021). Reappraisal of hydrologic alterations in the Roanoke River basin using extended data and improved RVA method. International Journal of Environmental Science and Technology, 18(2), 417–440.

    Article  CAS  Google Scholar 

  • Singha, P., & Pal, S. (2023a). Influence of hydrological state on trophic state in dam induced seasonally inundated flood plain wetland. Ecohydrology and Hydrobiology.

  • Singha, P., & Pal, S. (2023b). Wetland transformation and its impact on the livelihood of the fishing community in a flood plain river basin of India. Science of the Total Environment, 858, 159547.

    Article  CAS  Google Scholar 

  • Soukhaphon, A., Baird, I. G., & Hogan, Z. S. (2021). The impacts of hydropower dams in the Mekong River Basin: A review. Water, 13(3), 265.

    Article  Google Scholar 

  • Suwal, N., Kuriqi, A., Huang, X., Delgado, J., Młyński, D., & Walega, A. (2020). Environmental flows assessment in Nepal: The case of Kaligandaki River. Sustainability, 12(21), 8766.

    Article  Google Scholar 

  • Talukdar, S., & Pal, S. (2017). Impact of dam on inundation regime of flood plain wetland of punarbhaba river basin of barind tract of Indo-Bangladesh. International Soil and Water Conservation Research, 5(2), 109–121.

    Article  Google Scholar 

  • Talukdar, S., & Pal, S. (2018a). Impact of dam on flow regime and flood plain modification in Punarbhaba River Basin of Indo-Bangladesh Barind tract. Water Conservation Science and Engineering, 3, 59–77.

    Article  Google Scholar 

  • Talukdar, S., & Pal, S. (2018b). Impact of dam on flow regime and flood plain modification in Punarbhaba River Basin of Indo-Bangladesh Barind tract. Water Conservation Science and Engineering, 3(2), 59–77.

    Article  Google Scholar 

  • Talukdar, S., & Pal, S. (2019). Effects of damming on the hydrological regime of Punarbhaba river basin wetlands. Ecological Engineering, 135, 61–74.

    Article  Google Scholar 

  • Tang, Y., Chen, L., & She, Z. (2021). Evaluation of instream ecological flow with consideration of ecological responses to hydrological variations in the downstream Hongshui River Basin. China. Ecological Indicators, 130, 108104.

    Article  Google Scholar 

  • Tonkin, J. D., Merritt, D., Olden, J. D., Reynolds, L. V., & Lytle, D. A. (2018). Flow regime alteration degrades ecological networks in riparian ecosystems. Nature Ecology and Evolution, 2(1), 86–93.

    Article  Google Scholar 

  • Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61–78.

    Article  Google Scholar 

  • Uday Kumar, A., & Jayakumar, K. V. (2018). Assessment of hydrological alteration and environmental flow requirements for Srisailam dam on Krishna River. India. Water Policy, 20(6), 1176–1190.

    Article  Google Scholar 

  • Vogel, R. M., Sieber, J., Archfield, S. A., Smith, M. P., Apse, C. D., & Huber‐Lee, A. (2007). Relations among storage, yield, and instream flow. Water Resources Research43(5).

  • Vollmer, D., Shaad, K., Souter, N. J., Farrell, T., Dudgeon, D., Sullivan, C. A., et al. (2018). Integrating the social, hydrological and ecological dimensions of freshwater health: The Freshwater Health Index. Science of the Total Environment, 627, 304–313.

    Article  CAS  Google Scholar 

  • Wang, X., Yang, T., Yong, B., Krysanova, V., Shi, P., Li, Z., & Zhou, X. (2018). Impacts of climate change on flow regime and sequential threats to riverine ecosystem in the source region of the Yellow River. Environmental Earth Sciences, 77(12), 1–14.

    Article  Google Scholar 

  • Wang, Y., Lei, X., Wen, X., Fang, G., Tan, Q., Tian, Y., et al. (2019). Effects of damming and climatic change on the eco-hydrological system: A case study in the Yalong River, southwest China. Ecological Indicators, 105, 663–674.

    Article  Google Scholar 

  • Xu, X., Yang, G., Tan, Y., Liu, J., Zhang, S., & Bryan, B. (2020). Unravelling the effects of large-scale ecological programs on ecological rehabilitation of China’s Three Gorges Dam. Journal of Cleaner Production, 256, 120446.

    Article  CAS  Google Scholar 

  • Yan, Y., Yang, Z., Liu, Q., & Sun, T. (2010). Assessing effects of dam operation on flow regimes in the lower Yellow River. Procedia Environmental Sciences, 2, 507–516.

    Article  Google Scholar 

  • Yang, J., Yang, Y. E., Chang, J., Zhang, J., & Yao, J. (2019). Impact of dam development and climate change on hydroecological conditions and natural hazard risk in the Mekong River Basin. Journal of Hydrology, 579, 124177.

    Article  Google Scholar 

  • Yang, P., Yin, X. A., Yang, Z. F., & Tang, J. (2014). A revised range of variability approach considering the periodicity of hydrological indicators. Hydrological Processes, 28(26), 6222–6235.

    Article  Google Scholar 

  • Yang, W., Yang, H., Yang, D., & Hou, A. (2021). Causal effects of dams and land cover changes on flood changes in mainland China. Hydrology and Earth System Sciences, 25(5), 2705–2720.

    Article  Google Scholar 

  • Yang, Z., Liu, D., Ji, D., & Xiao, S. (2010). Influence of the impounding process of the Three Gorges Reservoir up to water level 172.5 m on water eutrophication in the Xiangxi Bay. Science China Technological Sciences, 53, 1114–1125.

    Article  CAS  Google Scholar 

  • Yin, L., Wang, L., Keim, B. D., Konsoer, K., & Zheng, W. (2022). Wavelet analysis of dam injection and discharge in three gorges dam and reservoir with precipitation and river discharge. Water, 14(4), 567.

    Article  Google Scholar 

  • Yoshida, Y., Lee, H. S., Trung, B. H., Tran, H. D., Lall, M. K., Kakar, K., & Xuan, T. D. (2020). Impacts of mainstream hydropower dams on fisheries and agriculture in lower Mekong Basin. Sustainability, 12(6), 2408.

    Article  Google Scholar 

  • Zeiringer, B., Seliger, C., Greimel, F., & Schmutz, S. (2018). River hydrology, flow alteration, and environmental flow. In Riverine ecosystem management (pp. 67–89). Springer.

  • Zhang, J., Zhang, X., & Xiao, H. (2019). Study of the dynamic evaluation model of overall hydrological alteration degree based on the RVA and set pair analysis—Markov chain methods. Water Supply, 19(5), 1515–1524.

    Article  Google Scholar 

  • Zhang, Q., Zhang, Z., Shi, P., Singh, V. P., & Gu, X. (2018). Evaluation of ecological instream flow considering hydrological alterations in the Yellow River basin, China. Global and Planetary Change, 160, 61–74.

    Article  Google Scholar 

  • Zheng, W., Li, X., Yin, L., Yin, Z., Yang, B., Liu, S., et al. (2017). Wavelet analysis of the temporal-spatial distribution in the Eurasia seismic belt. International Journal of Wavelets, Multiresolution and Information Processing, 15(03), 1750018.

    Article  Google Scholar 

  • Zheng, X., Yang, T., Cui, T., Xu, C., Zhou, X., Li, Z., et al. (2021). A revised range of variability approach considering the morphological alteration of hydrological indicators. Stochastic Environmental Research and Risk Assessment, 35(9), 1783–1803.

    Article  Google Scholar 

  • Zheng, Y., Zhang, G., Wu, Y., Xu, Y. J., & Dai, C. (2019). Dam effects on downstream riparian wetlands: The Nenjiang River, Northeast China. Water, 11(10), 2038.

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author of the article would like to thank the University Grants Commission (UGC Ref. No. 3267/(SC)(NET-JAN.2017), New Delhi, India, for providing financial support as a Junior Research Fellowship (JRF) to conduct the research work presented in this paper. We also would like to thank Dr. Luc Hens (Editor in Chief), Environment, Development and Sustainability, and three anonymous reviewers for their highly constructive suggestions for improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Singha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Singha, P. Hydrological alteration and its effect on the eco-hydrological state in Tangon river traversing Bangladesh and India. Environ Dev Sustain (2023). https://doi.org/10.1007/s10668-023-04296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-023-04296-5

Keywords

Navigation