Skip to main content

Advertisement

Log in

Mitigating greenhouse gas emissions from agriculture in Benin: spatial estimation and reduction options

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Greenhouse gas (GHG) emissions from agricultural activities have a significant impact on global climate change. Benin, a country in West Africa, relies heavily on agriculture, particularly cotton, maize, and rice cultivation. The study aims to estimate GHG emissions across 77 communities in Benin from 2000 to 2019 with a focus on cotton, maize, and rice cultivation. The study utilizes the Integrated Versatile Estimation System (IVES) and the IPCC's T1 estimation recommendations to estimate GHG emissions. The local spatial Moran index is used to identify factors affecting GHG emissions, including population density and education levels in communities. The study reveals that N2O emissions from cotton, maize, and rice cultivation have significantly increased over time, with high GHG concentrations observed in northern Benin and lower concentrations in the south. Moreover, the study finds that population density and education levels in communities are crucial factors determining agricultural GHG emissions. Higher population densities are associated with lower emissions, and higher education levels are associated with lower emissions, indicating better knowledge and adoption of sustainable agricultural practices. This research offers valuable insights into the factors driving agricultural GHG emissions in Benin, and it provides policy recommendations to reduce emissions and mitigate the impact of climate change. As agriculture is a vital sector for many countries globally, these findings are useful in efforts to reduce emissions in the agricultural sector worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  • Abbas, S., Kousar, S., Shirazi, S. A., Yaseen, M., & Latif, Y. (2022). Illuminating empirical evidence of climate change: Impacts on rice production in the Punjab Regions, Pakistan. Agricultural Research, 11, 32–47. https://doi.org/10.1007/s40003-021-00548-w

    Article  Google Scholar 

  • Abbas, S., Hussain, M.S., Lee, S. (2020a). Effects of climate on rice yield in the Punjab Province, Pakistan. Journal of the Korean Geographical Society 55, 379–390. https://doi.org/10.22776/KGS.2020.55.3.379

  • Abbas, S, Hussain, M.S., Shirazi, S.A., Khurshid, M. (2020b). Assessment of physiographic features and changing climate of Kabul river catchment area in Northwestern Pakistan. Pakistan Journal of Science, 72(2). https://doi.org/10.57041/pjs.v72i2.

  • Abbas, S., Shirazi, S.A., Hussain, M.S., Yaseen, M., Shakarullah, K., Wahla, S.S., Khurshid, M, (2020c). Impact of Climate Change on Forest Cover: Implications for Carbon Stock. Assessment and Sustainable Development in HKH Region-Pakistan. Pakistan Vision, 21(1), 66.

  • Adeleke, S., Abdul, B. K., & Zuzana, B. (2010). Smallholder Agriculture in East Africa: Trends, Constraints and Opportunities.

  • Adzawla, W., Sawaneh, M., & Yusuf, A. M. (2019). Greenhouse gasses emission and economic growth nexus of sub-Saharan Africa. Scientific African, 3, e00065. https://doi.org/10.1016/j.sciaf.2019.e00065

    Article  Google Scholar 

  • Agossou, D. J., & Koluman, N. (2022). Developing new methane emission factors and quantifying methane emission from Beninese cattle production. Science of the Total Environment, 848, 157545. https://doi.org/10.1016/j.scitotenv.2022.157545

    Article  CAS  Google Scholar 

  • Ba, M. N. (2016). Analysis of agricultural commodities value chains and greenhouse gas emission in rice and maize in West Africa: Impact on. Food Security, 7, 457–468. https://doi.org/10.4236/as.2016.77047

    Article  CAS  Google Scholar 

  • Bombelli, A., Henry, M., Castaldi, S., Adu-Bredu, S., Arneth, A., de Grandcourt, A., Grieco, E., Kutsch, W. L., Lehsten, V., Rasile, A., Reichstein, M., Tansey, K., Weber, U., & Valentini, R. (2009). An outlook on the Sub-Saharan Africa carbon balance. Biogeosciences, 6, 2193–2205. https://doi.org/10.5194/bg-6-2193-2009

    Article  CAS  Google Scholar 

  • Ciais, P., Bombelli, A., Williams, M., Piao, S. L., Chave, J., Ryan, C. M., Henry, M., Brender, P., & Valentini, R. (2011). The carbon balance of Africa: Synthesis of recent research studies. Philosophical Transactions of the Royal Society A., 369, 2038–2057. https://doi.org/10.1098/rsta.2010.0328

    Article  CAS  Google Scholar 

  • Dai, X., Sun, Z., & Müller, D. (2021). Driving factors of direct greenhouse gas emissions from China’s pig industry from 1976 to 2016. Journal of Integrative Agriculture, 20, 319–329. https://doi.org/10.1016/S2095-3119(20)63425-6

    Article  CAS  Google Scholar 

  • Effects of population and affluence on CO2 emissions [WWW Document], n.d. https://doi.org/10.1073/pnas.94.1.175

  • Emissions due to agriculture, n.d. 14.

  • Fermont, A. M., Tittonell, P. A., Baguma, Y., Ntawuruhunga, P., & Giller, K. E. (2010). Towards understanding factors that govern fertilizer response in cassava: Lessons from East Africa. Nutrient Cycling in Agroecosystems, 86, 133–151. https://doi.org/10.1007/s10705-009-9278-3

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations. (2013). Fao statistical yearbook 2013. Place of publication not identified.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2014). FAO statistical yearbook. Bangkok.

  • Fuglie, K. O., & Rada, N. E. (2013). Resources, Policies, and Agricultural Productivity in Sub-Saharan Africa. SSRN Journal. https://doi.org/10.2139/ssrn.2266459

  • GIEC. (2001). BILAN 2001 Des changements climatiqueS (Rapport de synthèse No. Troisième rapport d’évaluation du Groupe d’experts OMM intergouvernemental sur les changements climatiques). Wembley, Royaume-Uni.

  • Hickman, J. E., Havlikova, M., Kroeze, C., & Cheryl, A.. (2011). Current and future nitrous oxide emissions from African agriculture. Current Opinion in Environmental Sustainability, 3, 371. https://doi.org/10.1016/j.cosust.2011.08.001

    Article  Google Scholar 

  • Jacquet, I., Wang, J., Zhang, J., Wang, K., & Liang, S. (2022). An understanding of education in supporting cotton production: An empirical study in Benin, West Africa. Agriculture, 12, 836. https://doi.org/10.3390/agriculture12060836

    Article  Google Scholar 

  • Joël, A. D. M., & Moïse, D. I. (2019). Lyse des effets du gaz a effet de serre sur la production du coton au Benin (Memoire de la licence professionnelle en sciences Economiques). Universite de Parakou.

    Google Scholar 

  • Kouazounde, J. B., Gbenou, J. D., Babatounde, S., Srivastava, N., Eggleston, S. H., Antwi, C., Baah, J., & McAllister, T. A. (2015). Development of methane emission factors for enteric fermentation in cattle from Benin using IPCC Tier 2 methodology. Animal, 9, 526–533. https://doi.org/10.1017/S1751731114002626

    Article  CAS  Google Scholar 

  • Liu, Y., Gao, C., & Lu, Y. (2017). The impact of urbanization on GHG emissions in China: The role of population density. Journal of Cleaner Production, 157, 299–309. https://doi.org/10.1016/j.jclepro.2017.04.138

    Article  Google Scholar 

  • Lu, C., Tian, H. (2017). Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance 12.

  • Meyer, K., & Newman, P. (2020). Planetary accounting: quantifying how to live within planetary limits at different scales of human activity. Springer Nature Singapore. https://doi.org/10.1007/978-981-15-1443-2

  • Muhirwa, F., Shen, L., Elshkaki, A., Velempini, K., Hirwa, H., Zhong, S., & Mbandi, A. M. (2021). Decoupling energy, water, and food resources production from GHG emissions: A footprint perspective review of Africa from 1990 to 2017. Energies, 14, 6326. https://doi.org/10.3390/en14196326

    Article  CAS  Google Scholar 

  • Ngwabie, N. M., Ngwa, D., Njuasu, C., Chenwi, T., Yengong, F., & VanderZaag, A. (2019). Assessing greenhouse gas emissions from outdoor cattle sleeping areas in Cameroon. Scientific African, 4, e00088. https://doi.org/10.1016/j.sciaf.2019.e00088

    Article  Google Scholar 

  • Okorie, D. I., & Lin, B. (2022). Emissions in agricultural-based developing economies: A case of Nigeria. Journal of Cleaner Production, 337, 130570. https://doi.org/10.1016/j.jclepro.2022.130570

    Article  CAS  Google Scholar 

  • Pemadasa, M.A., 1991. M. Parry 1990. Climate change and world agriculture. Earthscan Publications Limited, London, xv + 157 pages. ISBN 1–85383–065–8. Price: £9.95 (paperback). Journal of Tropical Ecology 7, 372–372. https://doi.org/10.1017/S0266467400005642

  • She, W., Wu, Y., Huang, H., Chen, Z., Cui, G., Zheng, H., Guan, C., & Chen, F. (2017). Integrative analysis of carbon structure and carbon sink function for major crop production in China’s typical agriculture regions. Journal of Cleaner Production, 162, 702–708. https://doi.org/10.1016/j.jclepro.2017.05.108

    Article  CAS  Google Scholar 

  • Solomon, S., Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change (Eds.), (2007). Climate change 2007: the physical science basis: contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

  • Sun, Y., Qian, L., & Liu, Z. (2022). The carbon emissions level of China’s service industry: An analysis of characteristics and influencing factors. Environment, Development and Sustainability, 24, 13557–13582. https://doi.org/10.1007/s10668-021-02001-y

    Article  Google Scholar 

  • Tadele, Z. (2017). Raising crop productivity in Africa through intensification. Agronomy, 7, 22. https://doi.org/10.3390/agronomy7010022

    Article  Google Scholar 

  • Thompson, R. L., Chevallier, F., Crotwell, A. M., Dutton, G., Langenfelds, R. L., Prinn, R. G., Weiss, R. F., Tohjima, Y., Nakazawa, T., Krummel, P. B., Steele, L. P., Fraser, P., O’Doherty, S., Ishijima, K., & Aoki, S. (2014). Nitrous oxide emissions 1999 to 2009 from a global atmospheric inversion. Atmospheric Chemistry and Physics, 14, 1801–1817. https://doi.org/10.5194/acp-14-1801-2014

    Article  CAS  Google Scholar 

  • Tian, Y., Zhang, J., & He, Y. (2014). Research on spatial-temporal characteristics and driving factor of agricultural carbon emissions in China. Journal of Integrative Agriculture, 13, 1393–1403. https://doi.org/10.1016/S2095-3119(13)60624-3

    Article  Google Scholar 

  • Tian, J., Yang, H., Xiang, P., Liu, D., & Li, L. (2016). Drivers of agricultural carbon emissions in Hunan Province, China. Environmental Earth Sciences, 75, 121. https://doi.org/10.1007/s12665-015-4777-9

    Article  CAS  Google Scholar 

  • Tongwane, M. I., & Moeletsi, M. E. (2018). A review of greenhouse gas emissions from the agriculture sector in Africa. Agricultural Systems, 166, 124–134. https://doi.org/10.1016/j.agsy.2018.08.011

    Article  Google Scholar 

  • Tongwane, M., Mdlambuzi, T., Moeletsi, M., Tsubo, M., Mliswa, V., & Grootboom, L. (2016). Greenhouse gas emissions from different crop production and management practices in South Africa. Environmental Development, 19, 23–35. https://doi.org/10.1016/j.envdev.2016.06.004

    Article  Google Scholar 

  • UNCTAD (Ed.). (2002). Escaping the poverty trap, The least developed countries report. United Nations.

    Google Scholar 

  • Valentini, R., Arneth, A., Bombelli, A., Castaldi, S., CazzollaGatti, R., Chevallier, F., Ciais, P., Grieco, E., Hartmann, J., Henry, M., Houghton, R. A., Jung, M., Kutsch, W. L., Malhi, Y., Mayorga, E., Merbold, L., Murray-Tortarolo, G., Papale, D., Peylin, P., Poulter, B., Raymond, P., Santini, M., Sitch, S., Laurin, G. V., Werf, G., Williams, C. B., & Scholes, R. J. (2014). A full greenhouse gases budget of Africa: Synthesis, uncertainties, and vulnerabilities. Biogeosciences, 11, 381–407. https://doi.org/10.5194/bg-11-381-2014

    Article  CAS  Google Scholar 

  • Wang, G., Deng, X., Wang, J., Zhang, F., & Liang, S. (2019). Carbon emission efficiency in China: A spatial panel data analysis. China Economic Review, 56, 101313. https://doi.org/10.1016/j.chieco.2019.101313

    Article  Google Scholar 

  • Wei, T., Dong, W., Yan, Q., Chou, J., Yang, Z., & Tian, D. (2016). Developed and developing world contributions to climate system change based on carbon dioxide, methane and nitrous oxide emissions. Advances in Atmospheric Sciences, 33, 632–643. https://doi.org/10.1007/s00376-015-5141-4

    Article  CAS  Google Scholar 

  • Williams, C. A., Hanan, N. P., Neff, J. C., Scholes, R. J., Berry, J. A., Denning, A. S., & Baker, D. F. (2007). Africa and the global carbon cycle. Carbon Balance and Management, 2, 3. https://doi.org/10.1186/1750-0680-2-3

    Article  CAS  Google Scholar 

  • Zohoun, P.E. (2011). Inventaire national de gaz à effet de serre imputables au secteur des déchets au Bénin (Pour l’obtention du Diplôme d’Ingénieur de Conception). Universite D’Abomey-Calavi, Ecole Polytechnique D’Abomey-Calavi-Benin.

Download references

Acknowledgement

This paper is funded by National Key Research and Development Program of China (2021YFE0117900) and China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Zhang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacquet, I., Zhang, J., Wang, K. et al. Mitigating greenhouse gas emissions from agriculture in Benin: spatial estimation and reduction options. Environ Dev Sustain (2023). https://doi.org/10.1007/s10668-023-04195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-023-04195-9

Keywords

Navigation