Skip to main content

Advertisement

Log in

Complex network analysis of groundwater level in Sina Basin, Maharashtra, India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Monitoring groundwater level provides sufficient information on groundwater quantity and quality and is vital in effective management of water resources. This study applies transfer entropy coupled with directed-weighted complex network for the analysis of groundwater levels in the Sina river-basin, Maharashtra, India. All observation wells present in study area have been classified into five clusters using canopy clustering method. The direction and weight of the links of this complex network have been obtained by employing transfer entropy. Seasonal groundwater level data for pre-monsoon (May) and post-monsoon (October) were obtained from centre for groundwater board, Pune, Maharashtra for the period 1990–2009. Data analysis show that both pre-monsoon and post-monsoon groundwater level show significant decreasing trend. The proposed methodology determines the directional relationships between the selected observation wells of different clusters. It recognizes the most influenced well by using node strength and directed clustering coefficients. For each cluster, clustering coefficients and in-strength and out-strength have been calculated. Clustering coefficients for the selected wells of cluster 0 are 1, 1, 1, 0.6844 and 0.6342 which indicates Cluster 0 emerges as the strongest cluster. Similarly, clustering coefficients for cluster 4 are 0.6604, 0.6540, 0.3095, 0.2616 and 0 which means cluster 4 is the weakest among all the clusters formed. Clustering coefficients obtained for all clusters indicate that all wells within a cluster are forming clusters among themselves, however, some are strong whereas others are weak clusters. Therefore, transfer entropy can be effectively applied to groundwater and results obtained from it can be used for forecasting and water resources management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Some or all data that support the findings of this study are not available publicly; readers should contact the corresponding author for details.

References

  • Abo-Monasar, A., & Al-Zahrani, M. A. (2014). Estimation of rainfall distribution for the southwestern region of Saudi Arabia. Hydrological Sciences Journal, 59(2), 420–431.

    Article  Google Scholar 

  • Agarwal, A., Marwan, N., Maheswaran, R., Merz, B., & Kurtis, J. (2018). Quantifying the roles of single stations within homogeneous regions using complex network analysis. Journal of Hydrology, 563, 802–810.

    Article  Google Scholar 

  • Barbé, D. E., Cruise, J. F., & Singh, V. P. (1994). Derivation of a Distribution for the Piezometric Head in Groundwater Flow Using Entropy. 151–61. https://doi.org/10.1007/978-94-011-1072-3_12

  • Brauns, B., Chattopadhyay, S., Lapworth, D. J., Loveless, S. E., MacDonald, A. M., MaKenzie, A. A., Sekhar, M., Venkat Nara, S. N., & Srinivasan, V. (2022). Assessing the role of groundwater recharge from tanks in crystalline bedrock aquifers in Karnataka, India, using hydrochemical tracers. Journal of Hydrology X, 15, 100121.

    Article  CAS  Google Scholar 

  • Brunsell, N. A. (2010). A multiscale information theory approach to assess spatial-temporal variability of daily precipitation. Journal of Hydrology, 385(1–4), 165–172.

    Article  Google Scholar 

  • Clemente, G. P., & Grassi, R. (2018). Directed clustering in weighted networks: A new perspective. Chaos, Solitons and Fractals, 107, 26–38.

    Article  Google Scholar 

  • Cui, H., & Singh, V. P. (2016). Minimum relative entropy theory for streamflow forecasting with frequency as a random variable. Stochastic Environmental Research and Risk Assessment, 30(6), 1545–1563. https://doi.org/10.1007/s00477-016-1281-z

    Article  Google Scholar 

  • Cui, H., & Singh, V. P. (2017). Entropy spectral analyses for groundwater forecasting. Journal of Hydrologic Engineering, 22(7), 06017002.

    Article  Google Scholar 

  • Da Silva, V. P. R., Filho, A. F. B., Singh, V. P., Almeida, R. S. R., Da Silva, B. B., De Sousa, I. F., & De Holanda, R. M. (2017). Entropy theory for analysing water resources in Northeastern region of Brazil. Hydrological Sciences Journal, 62(7), 1029–1038.

    Article  Google Scholar 

  • der Laan, V., Mark, J., & Pollard, K. S. (2003). A new algorithm for hybrid hierarchical clustering with visualization and the bootstrap. Journal of Statistical Planning and Inference, 117(2), 275–303.

    Article  Google Scholar 

  • Ghorbani, M. A., Kahya, E., Roshni, T., & Kashani, M. H. (2021). Entropy analysis and pattern recognition in rainfall data, North Algeria. Theoretical and Applied Climatology, 144(1–2), 317–326.

    Article  Google Scholar 

  • Gulhane, V. A., Rode, S. V., & Pande, C. B. (2022). Correlation analysis of soil nutrients and prediction model through ISO cluster unsupervised classification with multispectral data. Multimed Tools Appl. https://doi.org/10.1007/s11042-022-13276-2

    Article  Google Scholar 

  • Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques. Third Edition. www.mkp.com

  • Ikotun, M. A., Seraj, R., & Islam, S. M. S. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178–210. https://doi.org/10.1016/j.ins.2022.11.139

    Article  Google Scholar 

  • Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106(4), 620. https://doi.org/10.1103/PhysRev.106.620

    Article  Google Scholar 

  • Jha, S. K., & Sivakumar, B. (2017). Complex networks for rainfall modeling: Spatial connections, temporal scale, and network size. Journal of Hydrology, 554, 482–489.

    Article  Google Scholar 

  • Konapala, G., Mondal, S., & Mishra, A. (2022). Quantifying spatial drought propagation potential in North America using complex network theory. Water Resources Research. https://doi.org/10.1029/2021WR030914

    Article  Google Scholar 

  • Krstanovic, P. F., & Singh, V. P. (1991). A univariate model for long-term streamflow forecasting. Stochastic Hydrology and Hydraulics, 5(3), 173–188. https://doi.org/10.1007/BF01544056

    Article  Google Scholar 

  • Kulkarni, H., Shah, M., & Vijay Shankar, P. S. (2015). Shaping the contours of groundwater governance in India. Journal of Hydrology: Regional Studies, 4, 172–192.

    Google Scholar 

  • Lee, J. H., & Singh, A. (2012). Difficult endoscopic retrograde cholangiopancreatography in cancer patients. Gastrointestinal Intervention, 1(1), 19–24.

    Article  Google Scholar 

  • Li, C., Singh, V. P., & Mishra, A. K. (2012). Entropy theory-based criterion for hydrometric network evaluation and design: Maximum information minimum redundancy. Water Resources Research, 48(5), 5521. https://doi.org/10.1029/2011WR011251

    Article  Google Scholar 

  • Liefhebber, F., & Boekee, D. E. (1987). Minimum information spectral analysis. Signal Processing, 12(3), 243–255.

    Article  Google Scholar 

  • Liu, W., Zou, P., Jiang, D., Quan, X., & Dai, H. (2022). Zoning of reservoir water temperature field based on k-means clustering algorithm. Journal of Hydrology: Regional Studies, 44, 101239.

    Google Scholar 

  • Luo, K., Shi, W., & Wang, W. (2020). Extreme scenario extraction of a grid with large scale wind power integration by combined entropy-weighted clustering method. Global Energy Interconnection, 3(2), 140–148.

    Article  Google Scholar 

  • Mack, J., Trakowaski, A., Rist, F., Herzog, K., & Toepfer, R. (2017). Experimental evaluation of the performance of local shape descriptors for the classification of 3D data in precision farming. Journal of Computer and Communications, 5(12), 1–12.

    Article  Google Scholar 

  • McCallum, A., Nigam, K., & Ungar, L. H. (2000). Efficient clustering of high-dimensional data sets with application to reference matching. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 169–178).

  • Mishra, A. K., Özger, M., & Singh, V. P. (2009). Trend and persistence of precipitation under climate change scenarios for Kansabati Basin, India. Hydrological Processes, 23(16), 2345–2357. https://doi.org/10.1002/hyp.7342

    Article  Google Scholar 

  • Mogheir, Y., de Lima, J. L. M. P., & Singh, V. P. (2004). Characterizing the spatial variability of groundwater quality using the entropy theory: II. Case study from gaza strip. Hydrological Processes, 18(13), 2579–2590. https://doi.org/10.1002/hyp.1466

    Article  Google Scholar 

  • Orimoloye, I. R., Olusola, A. O., Belle, J., Pande, C., & Ololade, O. O. (2022). Drought disaster monitoring and land use dynamics: Identification of drought drivers using regression-based algorithms. Natural Hazards, 112(2), 1085–1106.

    Article  Google Scholar 

  • Pande, C. B., Moharir, K. N., Panneerselvam, B., Singh, S. K., Elbeltagi, A., Pham, Q. B., Varade, A. M., & Rajesh, J. (2021). Delineation of groundwater potential zones for sustainable development and planning using analytical hierarchy process (AHP), and MIF techniques. Applied Water Science, 11(12), 186.

    Article  CAS  Google Scholar 

  • Papademetriou, R. C. (1998). Experimental comparison of two information-theoretic spectral estimators. International Conference on Signal Processing Proceedings, ICSP, 1, 141–144.

    Article  Google Scholar 

  • Rodríguez-Alarcón, R., & Lozano, S. (2022). Complex network modeling of a river Basin: An application to the Guadalquivir river in Southern Spain. Journal of Hydroinformatics. https://doi.org/10.2166/hydro.2022.148/1022980/jh2022148.pdf

    Article  Google Scholar 

  • Roshni, T., Choudhary, S., Jha, M. K., Ghorbani, M. A., & Wable, P. S. (2022). Management of groundwater drought risk by reliability theory and copula model in Sina basin, India. Sustainable Water Resources Management, 8, 23. https://doi.org/10.1007/s40899-022-00620-5

    Article  Google Scholar 

  • Roshni, T., Nayahi, J. V., Jha, M. K., Nehar, M., Souravanand, C., & Wable, P. S. (2020). Clustering of groundwater wells and spatial variation of groundwater recharge in Sina Basin, India. Asian Journal of Water, Environment and Pollution, 17(4), 11–21.

    Article  Google Scholar 

  • Sandoval, L. (2014). Structure of a global network of financial companies based on transfer entropy. Entropy, 16(8), 4443–4482.

    Article  Google Scholar 

  • Shah, T., Roy, A. D., Qureshi, A. S., & Wang, J. (2003). Sustaining Asia’s groundwater boom: An overview of issues and evidence. Natural Resources Forum, 27(2), 130–141. https://doi.org/10.1111/1477-8947.00048

    Article  Google Scholar 

  • Sireesha, C., Roshni, T., & Jha, M. K. (2020). Insight into the precipitation behavior of gridded precipitation data in the Sina basin. Environmental Monitoring and Assessment Journal., 192(11), 729.

    Article  Google Scholar 

  • Thomas, D., & Peter, F. J. (2013). Using transfer entropy to measure information flows between financial markets. Studies in Nonlinear Dynamics and Econometrics, 17(1), 85–102.

    Google Scholar 

  • Tongal, H., & Sivakumar, B. (2021). Forecasting rainfall using transfer entropy coupled directed-weighted complex networks. Atmospheric Research, 255, 105531.

    Article  Google Scholar 

  • Tongal, H., & Sivakumar, B. (2022). Transfer entropy coupled directed-weighted complex network analysis of rainfall dynamics. Stochastic Environmental Research and Risk Assessment, 36(3), 851–867.

    Article  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘Small-World’ networks. Nature, 393(6684), 440–442.

    Article  CAS  Google Scholar 

  • Witten, I.H., & Frank, E. (2005). Transformations: Engineering the Input and Output: Some Useful Trasnformations” Data Mining: Practical Machine Learning Tools and Techniques: 306–8.

  • Woodbury, A. D., & Ulrych, T. J. (1993). Minimum relative entropy: Forward probabilistic modeling. Water Resources Research, 29(8), 2847–2860. https://doi.org/10.1029/93WR00923

    Article  Google Scholar 

  • Xu, R., & Wunsch, D. C. (2010). Clustering algorithms in biomedical research: A review. IEEE Reviews in Biomedical Engineering, 3, 120–154.

    Article  Google Scholar 

  • Yasmin, N., & Sivakumar, B. (2021). Spatio-temporal connections in streamflow: A complex networks-based approach. Stochastic Environmental Research and Risk Assessment, 35(11), 2375–2390. https://doi.org/10.1007/s00477-021-02022-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thendiyath Roshni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharti, V., Roshni, T., Jha, M.K. et al. Complex network analysis of groundwater level in Sina Basin, Maharashtra, India. Environ Dev Sustain (2023). https://doi.org/10.1007/s10668-023-03375-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-023-03375-x

Keywords

Navigation