Skip to main content

Advertisement

Log in

Climate change, food security, and sustainable production: a comparison between arid and semi-arid environments of Iran

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Climate change is among the most pressing challenges for human advancement in the twenty-first century. Climate change is having a significant impact on the agricultural sector. The main objective of this study is to evaluate the food security status and sustainability of crop production under different climate change scenarios in the arid and semi-arid zones of Iran. To this end, the Statistical Down-Scaling Model (SDSM) and the outputs of the General Circulation Model (GCM) are employed to project future climate parameters under three climate scenarios. The study then employs the Just and Pope approach by using a panel dataset to evaluate the impact of climate change on crop production. Also, the multi-criteria decision-making (MCDM) technique is used to assess the sustainability of crop production from an economic, social, and environmental perspective in the context of climate change and baseline conditions. The results of the study show that precipitation has a significant favourable effect on crop yield in both zones. Maximum temperature is positively and significantly related to crop yield in the semi-arid area, while the relationship is negative in the arid region. Future projections reveal that under different climate scenarios, the production of irrigated wheat, dryland wheat, irrigated barley, dryland barley, and potato crops will change by a maximum of approximately 7.57%, 35.70%, 62.86%, 15.90%, and 26.88% in the semi-arid zone and − 24.07%, 29.73%, − 31.33%, − 4.80%, and 25.80% in the arid zone, respectively. The findings imply that climate change will decrease the food security index for all crops in the arid zone, while improving the situation for crops in the semi-arid region. The results also indicate that future climate change can have a significant adverse effect on economic water productivity, economic benefits, and the sustainability of strategic crop production in the arid zone compared to the semi-arid zone. Given that a large part of Iran is covered by an arid climate, designing coherent adaptation actions and mitigation policies need to be prioritized to tackle the negative impact of climate change on food production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdullah, M. H., Saboor, A., Baig, I. A., & Arshad, M. (2016). Climate change, risk and food security: An analysis of wheat crop in pakistan. Climate change challenge (3c) and social-economic-ecological interface-building (pp. 41–63). Cham: Springer.

    Google Scholar 

  • Adham, A., Wesseling, J. G., Abed, R., Riksen, M., Ouessar, M., & Ritsema, C. J. (2019). Assessing the impact of climate change on rainwater harvesting in the Oum Zessar watershed in southeastern Tunisia. Agricultural Water Management, 221, 131–140.

    Google Scholar 

  • Ahmadi, H., Ghalhari, G. F., & Baaghideh, M. (2019). Impacts of climate change on apple tree cultivation areas in iran. Climatic Change, 153(1), 91–103.

    Google Scholar 

  • Alamri, Y., & Al-Duwais, A. (2019). Food security in saudi arabia (case study: Wheat, barley, and poultry). Journal of Food Security, 7(2), 36–39.

    Google Scholar 

  • Alkaya, E., Bogurcu, M., Ulutas, F., & Demirer, G. N. (2015). Adaptation to climate change in industry: Improving resource efficiency through sustainable production applications. Water Environment Research, 87(1), 14–25.

    CAS  Google Scholar 

  • Amfo, B., Ali, E. B., & Atinga, D. (2021). Climate change, soil water conservation, and productivity: Evidence from cocoa farmers in ghana. Agricultural Systems, 191, 103172.

    Google Scholar 

  • Anjum, S. A., Farooq, M., Xie, X.-Y., Liu, X.-J., & Ijaz, M. F. (2012). Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought. Scientia Horticulturae, 140, 66–73.

    CAS  Google Scholar 

  • Araghi, A., Mousavi-Baygi, M., & Adamowski, J. (2017). Detecting soil temperature trends in northeast iran from 1993 to 2016. Soil and Tillage Research, 174, 177–192.

    Google Scholar 

  • Arshad, A., Zhang, Z., Zhang, W., & Gujree, I. (2019). Long-term perspective changes in crop irrigation requirement caused by climate and agriculture land use changes in Rechna Doab, Pakistan. Water, 11(8), 1567.

    Google Scholar 

  • Ashraf Vaghefi, S., Mousavi, S., Abbaspour, K., Srinivasan, R., & Yang, H. (2014). Analyses of the impact of climate change on water resources components, drought and wheat yield in semiarid regions: Karkheh river basin in iran. Hydrological Processes, 28(4), 2018–2032.

    Google Scholar 

  • Biglari, T., Maleksaeidi, H., Eskandari, F., & Jalali, M. (2019). Livestock insurance as a mechanism for household resilience of livestock herders to climate change: Evidence from iran. Land Use Policy, 87, 104043.

    Google Scholar 

  • Cabas, J., Weersink, A., & Olale, E. (2010). Crop yield response to economic, site and climatic variables. Climatic Change, 101(3), 599–616.

    CAS  Google Scholar 

  • Cao, H., Liu, J., Wang, G., Yang, G., & Luo, L. (2015). Identification of sand and dust storm source areas in Iran. Journal of Arid Land, 7(5), 567–578.

    Google Scholar 

  • Chiu, S.-Y., Kao, C.-Y., Tsai, M.-T., Ong, S.-C., Chen, C.-H., & Lin, C.-S. (2009). Lipid accumulation and Co2 utilization of nannochloropsis oculata in response to Co2 aeration. Bioresource Technology, 100(2), 833–838.

    CAS  Google Scholar 

  • Das, S. (2018). Impact of climate change (heat stress) on livestock: Adaptation and mitigation strategies for sustainable production. Agricultural Reviews, 39(2), 130–136.

    Google Scholar 

  • Debnath, A., Roy, J., Kar, S., Zavadskas, E. K., & Antucheviciene, J. (2017). A hybrid mcdm approach for strategic project portfolio selection of agro by-products. Sustainability, 9(8), 1302.

    Google Scholar 

  • Doğan, H. G., & Kan, A. (2019). The effect of precipitation and temperature on wheat yield in turkey: A panel fmols and panel vecm approach. Environment, Development and Sustainability, 21(1), 447–460.

    Google Scholar 

  • Gebrechorkos, S. H., Bernhofer, C., & Hülsmann, S. (2020). Climate change impact assessment on the hydrology of a large river basin in Ethiopia using a local-scale climate modelling approach. Science of the Total Environment, 742, 140504.

    CAS  Google Scholar 

  • Ghamghami, M., & Beiranvand, J. P. (2022). Rainfed crop yield response to climate change in iran. Regional Environmental Change, 22(1), 1–17.

    Google Scholar 

  • Gohari, A., Eslamian, S., Abedi-Koupaei, J., Bavani, A. M., Wang, D., & Madani, K. (2013). Climate change impacts on crop production in Iran’s Zayandeh-Rud river basin. Science of the Total Environment, 442, 405–419.

    CAS  Google Scholar 

  • Gupta, R., & Mishra, A. (2019). Climate change induced impact and uncertainty of rice yield of agro-ecological zones of india. Agricultural Systems, 173, 1–11.

    Google Scholar 

  • Gupta, R., Somanathan, E., & Dey, S. (2017). Global warming and local air pollution have reduced wheat yields in india. Climatic Change, 140(3), 593–604.

    Google Scholar 

  • Hajarpoor, A., Soltani, A., Zeinali, E., & Sayyedi, F. (2014). Simulating climate change impacts on production of chickpea under water-limited conditions. Agriculture Science Developments, 3(6), 209–217.

    Google Scholar 

  • Han, X., Feng, Y., Zhao, J., Ren, A., Lin, W., Sun, M., & Gao, Z. (2022). Hydrothermal conditions impact yield, yield gap and water use efficiency of dryland wheat under different mulching practice in the loess plateau. Agricultural Water Management, 264, 107422.

    Google Scholar 

  • Hargreaves, G. H., & Samani, Z. A. (1982). Estimating potential evapotranspiration. Journal of the Irrigation and Drainage Division, 108(3), 225–230.

    Google Scholar 

  • Hasanthika, W., Edirisinghe, J., & Rajapakshe, R. (2014). Climate variability, risk and paddy production. Journal of Environmental Professionals Sri Lanka, 2(2), 57.

    Google Scholar 

  • Hashempour, Y., Nasseri, M., Mohseni-Bandpei, A., Motesaddi, S., & Eslamizadeh, M. (2020). Assessing vulnerability to climate change for total organic carbon in a system of drinking water supply. Sustainable Cities and Society, 53, 101904.

    Google Scholar 

  • Hezareh, R., Shayanmehr, S., Darbandi, E., & Schieffer, J. (2017). Energy consumption and environmental pollution: Evidence from the spatial panel simultaneous-equations model of developing countries .No. 1377–2016–109899.

  • Isik, M., & Devadoss, S. (2006). An analysis of the impact of climate change on crop yields and yield variability. Applied Economics, 38(7), 835–844.

    Google Scholar 

  • Jayant, A., Gupta, P., Garg, S., & Khan, M. (2014). Topsis-ahp based approach for selection of reverse logistics service provider: A case study of mobile phone industry. Procedia Engineering, 97, 2147–2156.

    Google Scholar 

  • Jin, S., Hao, Z., Zhang, K., Yan, Z., & Chen, J. (2021). Advances and challenges for the electrochemical reduction of Co2 to Co: From fundamentals to industrialization. Angewandte Chemie International Edition, 60(38), 20627–20648.

    CAS  Google Scholar 

  • Just, R. E., & Pope, R. D. (1978). Stochastic specification of production functions and economic implications. Journal of Econometrics, 7(1), 67–86.

    Google Scholar 

  • Just, R. E., & Pope, R. D. (1979). Production function estimation and related risk considerations. American Journal of Agricultural Economics, 61(2), 276–284.

    Google Scholar 

  • Karahalios, H. (2017). The application of the ahp-topsis for evaluating ballast water treatment systems by ship operators. Transportation Research Part d: Transport and Environment, 52, 172–184.

    Google Scholar 

  • Karimi, V., Karami, E., & Keshavarz, M. (2018). Climate change and agriculture: Impacts and adaptive responses in iran. Journal of Integrative Agriculture, 17(1), 1–15.

    Google Scholar 

  • Karimifard, S., Moghadasi, R., Yazdani, S., & Mohammadinejad, A. (2016). The economic impact of climate change on agricultural crops yield in khuzestan (case study: Wheat, barley, and rice). European Online Journal of Natural and Social Sciences: Proceedings, 4(1(s)), 2254–2260.

    Google Scholar 

  • Khanlari, A. (2013). The effect of climate change on land use and agricultural sector operation of Mazandaran province. University of zabol.

  • Kousari, M. R., Ahani, H., & Hendi-zadeh, R. (2013). Temporal and spatial trend detection of maximum air temperature in Iran during 1960–2005. Global and Planetary Change, 111, 97–110.

    Google Scholar 

  • Krajnc, D., & Glavič, P. (2003). Indicators of sustainable production. Clean Technologies and Environmental Policy, 5(3), 279–288.

    Google Scholar 

  • Li, M., Li, H., Fu, Q., Liu, D., Yu, L., & Li, T. (2021a). Approach for optimizing the water-land-food-energy nexus in agroforestry systems under climate change. Agricultural Systems, 192, 103201.

    Google Scholar 

  • Li, N., Yao, N., Li, Y., Chen, J., Liu, D., Biswas, A., Li, L., Wang, T., & Chen, X. (2021b). A meta-analysis of the possible impact of climate change on global cotton yield based on crop simulation approaches. Agricultural Systems, 193, 103221.

    Google Scholar 

  • Lone, B. A., Tripathi, S., Fayaz, A., Singh, P., Qayoom, S., Kumar, S., & Dar, Z. A. (2019). Simulating the impact of climate change on growth and yield of maize using ceres-maize model under temperate Kashmir. Current Journal of Applied Science and Technology, 1, 1–11.

    Google Scholar 

  • Mahmood, N., Arshad, M., Kächele, H., Ma, H., Ullah, A., & Müller, K. (2019). Wheat yield response to input and socioeconomic factors under changing climate: Evidence from rainfed environments of Pakistan. Science of the Total Environment, 688, 1275–1285.

    CAS  Google Scholar 

  • Manos, B., Chatzinikolaou, P., & Kiomourtzi, F. (2015). Sustainable planning of agricultural production. International Journal of Business Innovation and Research, 9(1), 65–80.

    Google Scholar 

  • Meghdadi, N., & Hajarpoor, A. (2015). Simulating climate change impacts on production of chickpea in Zanjan province. Journal of Crop Production, 7(4), 1–22.

    Google Scholar 

  • Mishra, P., Khare, D., Mondal, A., & Kundu, S. (2014). Multiple linear regression based statistical downscaling of daily precipitation in a canal command. Climate change and biodiversity (Vol. 1, pp. 73–83)

    Google Scholar 

  • Mosammam, H. M., Mosammam, A. M., Sarrafi, M., Nia, J. T., & Esmaeilzadeh, H. (2016). Analyzing the potential impacts of climate change on rainfed wheat production in Hamedan province, Iran, via generalized additive models. Journal of Water and Climate Change, 7(1), 212–223.

    Google Scholar 

  • Nassiri, M., Koocheki, A., Kamali, G., & Shahandeh, H. (2006). Potential impact of climate change on rainfed wheat production in iran: (potentieller einfluss des klimawandels auf die weizenproduktion unter rainfed-bedingungen im Iran). Archives of Agronomy and Soil Science, 52(1), 113–124.

    Google Scholar 

  • Noh, S., Son, Y., & Park, J. (2018). Life cycle carbon dioxide emissions for fill dams. Journal of Cleaner Production, 201, 820–829.

    CAS  Google Scholar 

  • Omurbek, N., Akcakaya, O., & Urmak Akcakaya, E. D. (2021). Integrating cluster analysis with mcdm methods for the evaluation of local agricultural production. Croatian Operational Research Review, 12(2), 105–117.

    Google Scholar 

  • Paredes, P., Rodrigues, G. C., do Rosário Cameira, M., Torres, M. O., & Pereira, L. S. (2017). Assessing yield, water productivity and farm economic returns of malt barley as influenced by the sowing dates and supplemental irrigation. Agricultural Water Management, 179, 132–143.

    Google Scholar 

  • Perdinan, P. (2010). A rationale for international cooperation in implementing adaptation strategies to climate change in the face of global inequality. Journal of Indonesia Focus, 1(1), 8.

    Google Scholar 

  • Poudel, M. P., Chen, S.-E., & Huang, W.-C. (2014). Climate influence on rice, maize and wheat yields and yield variability in nepal. Journal of Agricultural Science and Technology. B, 4(1B), 38.

    Google Scholar 

  • Puška, A., Nedeljković, M., Hashemkhani Zolfani, S., & Pamučar, D. (2021). Application of interval fuzzy logic in selecting a sustainable supplier on the example of agricultural production. Symmetry, 13(5), 774.

    Google Scholar 

  • Radmehr, R., Ghorbani, M., & Kulshreshtha, S. (2020). Selecting strategic policy for irrigation water management (case study: Qazvin plain, Iran). Journal of Agricultural Science and Technology, 22(2), 579–593.

    Google Scholar 

  • Radmehr, R., Ghorbani, M., & Ziaei, A. N. (2021). Quantifying and managing the water-energy-food nexus in dry regions food insecurity: New methods and evidence. Agricultural Water Management, 245, 106588.

    Google Scholar 

  • Radmehr, R., & Shayanmehr, S. (2018). The determinants of sustainable irrigation water prices in Iran. Bulgarian Journal of Agricultural Science, 24(6), 893–919.

    Google Scholar 

  • Ramesh, S., Kannan, S., & Baskar, S. (2012). Application of modified nsga-ii algorithm to multi-objective reactive power planning. Applied Soft Computing, 12(2), 741–753.

    Google Scholar 

  • Regmi, H. R., KedarRijal, G. R. J., Sapkota, R. P., Arun, G., & Thapa, S. (2019). Crop yield response to climate change in different ecolozical zones of Nepal. Asian Journal of Science and Technology, 10(11), 10484–10492.

    Google Scholar 

  • Sada, R., Schmalz, B., Kiesel, J., & Fohrer, N. (2019). Projected changes in climate and hydrological regimes of the western Siberian lowlands. Environmental Earth Sciences, 78(2), 1–15.

    CAS  Google Scholar 

  • Sambasivam, V. P., Thiyagarajan, G., Kabir, G., Ali, S. M., Khan, S. A. R., & Yu, Z. (2020). Selection of winter season crop pattern for environmental-friendly agricultural practices in India. Sustainability, 12(11), 4562.

    Google Scholar 

  • Sarker, M. A. R., Alam, K., & Gow, J. (2014). Assessing the effects of climate change on rice yields: An econometric investigation using Bangladeshi panel data. Economic Analysis and Policy, 44(4), 405–416.

    Google Scholar 

  • Sarker, M. A. R., Alam, K., & Gow, J. (2019). Performance of rain-fed aman rice yield in Bangladesh in the presence of climate change. Renewable Agriculture and Food Systems, 34(4), 304–312.

    Google Scholar 

  • Shayanmehr, S., Porhajašová, J. I., Babošová, M., Sabouhi Sabouni, M., Mohammadi, H., Rastegari Henneberry, S., & Shahnoushi, F. N. (2022). The impacts of climate change on water resources and crop production in an arid region. Agriculture, 12(7), 1056.

    Google Scholar 

  • Shayanmehr, S., Rastegari Henneberry, S., Sabouhi Sabouni, M., & Shahnoushi Foroushani, N. (2020a). Climate change and sustainability of crop yield in dry regions food insecurity. Sustainability, 12(23), 9890.

    Google Scholar 

  • Shayanmehr, S., Rastegari Henneberry, S., Sabouhi Sabouni, M., & Shahnoushi Foroushani, N. (2020b). Drought, climate change, and dryland wheat yield response: An econometric approach. International Journal of Environmental Research and Public Health, 17(14), 5264.

    Google Scholar 

  • Sinnarong, N., Chen, C. C., McCarl, B., & Tran, B. L. (2019). Estimating the potential effects of climate change on rice production in Thailand. Paddy and Water Environment, 17(4), 761–769.

    Google Scholar 

  • Stojčić, M., Zavadskas, E. K., Pamučar, D., Stević, Ž, & Mardani, A. (2019). Application of MCDM methods in sustainability engineering: A literature review 2008–2018. Symmetry, 11(3), 350.

    Google Scholar 

  • Tavana, A., Javid, A. E., Houshfar, E., Andwari, A. M., Ashjaee, M., Shoaee, S., Maghmoomi, A., & Marashi, F. (2019). Toward renewable and sustainable energies perspective in Iran. Renewable Energy, 139, 1194–1216.

    Google Scholar 

  • Wang, C.-N., Yang, C.-Y., & Cheng, H.-C. (2019). A fuzzy multicriteria decision-making (MCDM) model for sustainable supplier evaluation and selection based on triple bottom line approaches in the garment industry. Processes, 7(7), 400.

    Google Scholar 

  • Wang, J., Ghimire, R., Fu, X., Sainju, U. M., & Liu, W. (2018). Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield. Agricultural Water Management, 206, 95–101.

    Google Scholar 

  • Wang, Y., Peng, S., Huang, J., Zhang, Y., Feng, L., Zhao, W., Qi, H., Zhou, G., & Deng, N. (2022). Prospects for cotton self-sufficiency in China by closing yield gaps. European Journal of Agronomy, 133, 126437.

    Google Scholar 

  • Wilby, R. L., Dawson, C. W., & Barrow, E. M. (2002). Sdsm—a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17(2), 145–157.

    Google Scholar 

  • Ye, L., & Van Ranst, E. (2009). Production scenarios and the effect of soil degradation on long-term food security in China. Global Environmental Change, 19(4), 464–481.

    Google Scholar 

  • Ye, L., Xiong, W., Li, Z., Yang, P., Wu, W., Yang, G., Fu, Y., Zou, J., Chen, Z., Van Ranst, E., & Tang, H. (2013). Climate change impact on China food security in 2050. Agronomy for Sustainable Development, 33(2), 363–374.

    Google Scholar 

  • Zhang, Y., You, Q., Chen, C., & Ge, J. (2016). Impacts of climate change on streamflows under RCP scenarios: A case study in Xin river basin, China. Atmospheric Research, 178, 521–534.

    Google Scholar 

  • Zulfiqar, F., & Ashfaq, M. (2014). Estimation of wheat yield response under different agro-climatic conditions in Punjab. Sarhad Journal of Agriculture, 30(4), 386–478.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Ferdowsi University of Mashhad, Iran [No. 57324].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Shahnoushi Foroushani.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shayanmehr, S., Henneberry, S.R., Ali, E.B. et al. Climate change, food security, and sustainable production: a comparison between arid and semi-arid environments of Iran. Environ Dev Sustain 26, 359–391 (2024). https://doi.org/10.1007/s10668-022-02712-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-022-02712-w

Keywords

Navigation