Skip to main content

Advertisement

Log in

Farmers’ adaptation to climate-smart agriculture (CSA) in NW Turkey

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Some of the measures to be taken to reduce greenhouse gas emissions are related to agricultural activities. Climate-smart agriculture (CSA) is a method allowing implementation of agricultural practices in compliance with the efforts to combat climate change. CSA is an approach guiding agricultural systems under changing climate conditions to provide sustainable development and food safety. The targets of this approach included sustainable increase in agricultural production, resistance and adaptation to climate change and reduction of greenhouse gas emissions. Farmer participation and level of consciousness play a significant role in successful implementation of CSA. The present study was conducted to put forth farmers’ adaptation of climate change. Farmer perceptions or approaches to CSA were taken into consideration. In the study, the literature was examined to analyze the adoption of CSA and the typology of CSA applications was developed. The typology consists of five categories: (1) soil management, (2) water management, (3) chemical input management, (4) crop diversification and (5) planting trees/agroforestry. Household survey data were used to create and test hypotheses about farmers’ adoption of CSA. Nonparametric tests were used to estimate the socioeconomic variables that were effective in the adoption of CSA categories. The results generally show that CSA categories have high application potential among farmers. The factors influencing farmer decisions on these issues were identified as education, participation into agricultural meetings, land size and agricultural income. Such factors may guide policymakers while taking measures against climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abera, W., Assen, M., & Satyal, P. (2020). Synergy between farmers’ knowledge of soil quality change and scientifically measured soil quality indicators in Wanka watershed, northwestern highlands of Ethiopia. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-020-00622-3.

    Article  Google Scholar 

  • Abi, M., Kessler, A., Oosterveer, P., & Tolossa, D. (2020). How farmers’ characteristics influence spontaneous spreading of stone bunds in the highlands of Ethiopia: A case study in the Girar Jarso woreda. Environment, Development and Sustainability, 22, 317–335.

    Article  Google Scholar 

  • Ajayi, O. C., Akinnifesi, F. K., Sileshi, G., & Kanjipite, W. (2009). Labour inputs and financial profitability of conventional and agroforestry-based soil fertility management practices in Zambia. Agrekon, 48(3), 276–292.

    Article  Google Scholar 

  • Amadu, F. O., McNamara, P. E., & Miller, D. C. (2020a). Understanding the adoption of climate-smart agriculture: A farm-level typology with empirical evidence from southern Malawi. World Development, 126, 104692. https://doi.org/10.1016/j.worlddev.2019.104692.

    Article  Google Scholar 

  • Amadu, F. O., Miller, D. C., & McNamara, P. E. (2020b). Agroforestry as a pathway to agricultural yield impacts in climate-smart agriculture investments: Evidence from southern Malawi. Ecological Economics, 167, 106443.

    Article  Google Scholar 

  • Arslan, A., McCarthy, N., Lipper, L., Asfaw, S., & Cattaneo, A. (2014). Adoption and intensity of adoption of conservation farming practices in Zambia. Agriculture, Ecosystems & Environment, 187, 72–86.

    Article  Google Scholar 

  • Below, T. B., Mutabazi, K. D., Kirschke, D., Franke, C., Sieber, S., Siebert, R., et al. (2012). Can farmers’ adaptation to climate change be explained by socio-economic household-level variables? Global Environmental Change, 22(1), 223–235.

    Article  Google Scholar 

  • Bindak, R. (2014). Mann-Whitney U ile Student’st testinin I. Tip Hata ve Güç bakımından Karşılaştırılması: Monte Carlo Simülasyon Çalışması (011302)(5-11). Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 14(1), 5–11.

    Google Scholar 

  • Boyraz, C., & Cangir, D. (2008). İklim Değişikliği ve Çölleşme veya Toprak/Arazi Bozulumunun Türkiye’deki Boyutları ve Çölleşme İle Mücadele. Tekirdağ Ziraat Fakültesi Dergisi, 5(2), 169–186.

    Google Scholar 

  • Çakmak, B., Yıldırım, M. & Aküzüm, T. (2008). Türkiye’de Tarımsal Sulama Yönetimi, Sorunlar ve Çözüm Önerileri, TMMOB 2. Su Politikaları Kongresi, http://www.imo.org.tr/resimler/ekutuphane/pdf/10929.pdf.

  • Campbell, J., Cheong, S., McCornick, M., Pulwarty, S., Supratid, R. S., & Zieryogel, G. (2012). Managing the risks from climate extremes at the local level. In C. B. Field, et al. (Eds.), Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the IPCC. Cambridge: Cambridge University Press.

    Google Scholar 

  • Canlı, K. (2010). Küresel Isınmanın Orman Ekosistemine Etkisi. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2, 86–96.

    Google Scholar 

  • CCAFS (Climate change, agriculture, and food security). (2019). What is climate-smart agriculture? Climate-Smart Agriculture Guide. Retrieved, February 20, 2019 from https://csa.guide/csa/what-is-climate-smart-agriculture.

  • Collier, D., LaPorte, J., & Seawright, J. (2012). Putting typologies to work: Concept formation, measurement, and analytic rigor. Political Research Quarterly, 65(1), 217–232.

    Article  Google Scholar 

  • Corder, G. W., & Foreman, D. I. (2014). Nonparametric statistics: A step-by-step approach. New York: Wiley.

    Google Scholar 

  • Demirkesen, A. C., Evrendilek, F., & Berberoglu, S. (2008). Quantifying coastal inundation vulnerability of Turkey to sea-level rise. Environmental Monitoring and Assessment, 138(1–3), 101–106.

    Article  Google Scholar 

  • Deressa, T. T., Hassan, R. M., & Ringler, C. (2011). Perception of and adaptation to climate change by farmers in the Nile basin of Ethiopia. Journal of Agricultural Science, 149(1), 23–31. https://doi.org/10.1017/S0021859610000687.

    Article  Google Scholar 

  • Diederen, P., van Meijl, H., & Wolters, A. (2003). Modernisation in agriculture: what makes a farmer adopt an innovation? (No. 1225-2016-98650).

  • Dos Santos, M. J. P. L., Henriques, P. D. S., Fragoso, R. D. S., & Carvalho, M. D. S. (2010). Attitudes of the Portuguese farmers to the EU common agricultural policy. Agricultural Economics, 56(10), 460–469.

    Google Scholar 

  • Duffy, C., Toth, G., Cullinan, J., Murray, U., & Spillane, C. (2020). Climate smart agriculture extension: gender disparities in agroforestry knowledge acquisition. Climate and Development. https://doi.org/10.1080/17565529.2020.1715912.

    Article  Google Scholar 

  • Everest, T. (2018). Prioritization of karamenderes basin’s groundwater potential with morphometric analyses (In semi-arid climatic conditions Canakkale, Turkey). Fresenius Environmental Bulletin, 27(12), 8253–8263.

    CAS  Google Scholar 

  • Everest, T., Sungur, A., & Özcan, H. (2020). MEDALUS Yöntemi Kullanılarak Karacabey Tarım İşletmesi Toprak Kalite İndeksinin Değerlendirilmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 7(1), 120–131.

    Article  Google Scholar 

  • FAO. (2018). Food and agriculture organization, food and agriculture organization, climate-smart agriculture case studies 2018. Successful approaches from different regions. Rome. 44 p. Licence: CC BY-NC-SA 3.0 IGO.

  • FAO. (2019a). Food and agriculture organization, climate-smart agriculture history. http://www.fao.org/climate-smart-agriculture/overview/faqs/history/en/.

  • FAO. (2019b). Food and agriculture organization, climate-smart agriculture, http://www.fao.org/climate-smart-agriculture/en/.

  • FAO. (2019c). Food and agriculture organization, climate-smart agriculture, on the ground, Turkey. http://www.fao.org/climate-smart-agriculture/on-the-ground/europe-and-central-asia/en/.

  • FAO. (2019d). Food and agriculture organization, conservation agriculture. http://www.fao.org/3/i7480en/I7480EN.pdf.

  • Feder, G., & O’Mara, G. T. (1982). On information and innovation diffusion: A Bayesian approach. American Journal of Agricultural Economics, 64(1), 145–147.

    Article  Google Scholar 

  • Flavin, C. (1990). Slowing global warming. Environmental Science & Technology, 24(2), 170–171.

    Article  CAS  Google Scholar 

  • Fujihara, Y., Tanaka, K., Watanabe, T., Nagano, T., & Kojiri, T. (2008). Assessing the impacts of climate change on the water resources of the Seyhan River Basin in Turkey: Use of dynamically downscaled data for hydrologic simulations. Journal of Hydrology, 353, 33–48.

    Article  Google Scholar 

  • Garrity, D. P., Akinnifesi, F. K., Ajayi, O. C., Weldesemayat, S. G., Mowo, J. G., Kalinganire, A., et al. (2010). Evergreen agriculture: A robust approach to sustainable food security in Africa. Food security, 2(3), 197–214.

    Article  Google Scholar 

  • Grosjean, G., Monteils, F., Hamilton, S. D., Blaustein-Rejto, D., Gatto, M., Talsma, T., et al. (2016). Increasing resilience to droughts in Viet Nam: The role of forests, agroforests and climate smart agriculture. CCAFS-CIAT-UN-REDD Position Paper no. 1, Hanoi, Viet Nam.

  • Gürer, I. & Uçar, I. (2009). Flood disasters’ inventory in Turkey in 2009. In International symposium on water management and hydraulic engineering. Ohrid, Macedonia.

  • Haggblade, S., & Tembo, G., (2003). Conservation farming in Zambia. EPTD Discussion Paper 108. In International food policy research institute (IFPRI), Washington, DC.

  • Hassanli, A. M., Ebrahimizadeh, M. A., & Beecham, S. (2009). The effects of irrigation methods with effluent and irrigation scheduling on water use efficiency and corn yields in an arid region. Agricultural Water Management, 96(1), 93–99.

    Article  Google Scholar 

  • IPCC. (2014). Intergovernmental panel on climate change, fifth assessment report. https://www.ipcc.ch/site/assets/uploads/2018/02/AR5_SYR_FINAL_SPM.pdf.

  • IUCN. (2019). International union for conservation of nature, climate change in the Mediterranean. https://www.iucn.org/regions/mediterranean/our-work/climate-change-mediterranean.

  • Karaca, M., & Nicholls, R. J. (2008). Potential implications of accelerated sea-level rise for Turkey. Journal of Coastal Research, 24(2), 288–298.

    Article  Google Scholar 

  • Khatri-Chhetri, A., Aggarwal, P. K., Joshi, P. K., & Vyas, S. (2017). Farmers’ prioritization of climate-smart agriculture (CSA) technologies. Agricultural Systems, 151, 184–191.

    Article  Google Scholar 

  • Kimaro, A. A., Sererya, O. G., Matata, P., Uckert, G., Hafner, J., Graef, F., Sieber, S. & Rosenstock, T. S. (2019). Understanding the multidimensionality of climate-smartness: Examples from agroforestry in Tanzania. In The climate-smart agriculture papers (pp. 153–162). Springer, Cham.

  • Köse, İ. A., & Öztemur, B. (2014). Kayıp veri ele alma yöntemlerinin t-testi ve ANOVA parametreleri üzerine etkisinin incelenmesi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi.

  • Kristjanson, P., Reid, R. S., Dickson, N., Clark, W. C., Romney, D., Puskur, R., et al. (2009). Linking international agricultural research knowledge with action for sustainable development. Proceedings of the National Academy of Sciences, 106(13), 5047–5052.

    Article  CAS  Google Scholar 

  • Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American statistical Association, 47(260), 583–621.

    Article  Google Scholar 

  • Kuleli, T. (2010). City-based risk assessment of sea level rise using topographic and census data for the Turkish Coastal Zone. Estuaries and Coasts, 33, 640–651.

    Article  Google Scholar 

  • Kuleli, T., Şenkal, O., & Erdem, M. (2009). National assessment of sea level rise using topographic and census data for Turkish coastal zone. Environmental Monitoring and Assessment, 156, 425–434.

    Article  Google Scholar 

  • MacFarland, T. W., & Yates, J. M. (2016). Introduction to nonparametric statistics for the biological sciences using R. Cham: Springer.

    Book  Google Scholar 

  • Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, 18(1), 50–60.

    Article  Google Scholar 

  • Mazvimavi, K. (2011). Socio-economic analysis of conservation agriculture in southern Africa. Network paper No. 2. Food and Agriculture Organization ofthe United Nations, Regional Emergency Office for Southern Africa, Rome, Italy.

  • McCarthy, N., Lipper, L., & Branca, G. (2011). Climate-smart agriculture: smallholder adoption and implications for climate change adaptation and mitigation. Mitigation of Climate Change in Agriculture Working Paper (Vol. 3, pp. 1–37).

  • McKinney, J. C. (1969). Typification, typologies, and sociological theory. Social Forces, 48(1), 1–12.

    Article  Google Scholar 

  • Meijer, S. S., Sileshi, G. W., Kundhlande, G., Catacutan, D., & Nieuwenhuis, M. (2015). The role of gender and kinship structure in household decision-making for agriculture and tree planting in Malawi. Journal of Gender, Agriculture and Food Security (Agri-Gender), 1(302-2016-4750), 54–76.

    Google Scholar 

  • Mengü, G. P., Süer, A., & Özçakal, E. (2011). Kuraklık yönetim stratejileri. Ege Üniversitesi Ziraat Fakültesi Dergisi, 48(2), 175–181.

    Google Scholar 

  • Mercer, D. E. (2004). Adoption of agroforestry innovations in the tropics: A review. Agroforestry Systems, 61(1–3), 311–328.

    Google Scholar 

  • Miller, D. C., Muñoz-Mora, J. C., & Christiaensen, L. (2017). Prevalence, economic contribution, and determinants of trees on farms across Sub-Saharan Africa. Forest Policy and Economics, 84, 47–61.

    Article  Google Scholar 

  • Nayak, P. K., Nayak, A. K., Kumar, U., Tripathi, R., Panda, B. B., & Kumar, A. (2019). Crop–livestock and agroforestry-based integrated farming system: A climate smart technology forsmall and marginal farmers in India. Climate Resilient Agricultural Technologies for Future. Training Manual, Model Training Course on Climate Resilient Agricultural Technologies for Future, ICAR-National Rice Research Institute, Cuttack, 3, 78.

  • Newbold, P. (1995). Statistics for business and economics (p. 1016). Upper Saddle River: Prentice Hall Inc.

    Google Scholar 

  • Özdamar, K. (2004). Paket Programlar İle İstatistiksel Veri Analizi -1. Eskişehir: Kaan Kitapevi.

    Google Scholar 

  • Özkul, S. (2009). Assessment of climate change effects in Aegean river basins: the case of Gediz and Buyuk Menderes Basins. Climatic Change, 97, 253–283.

    Article  Google Scholar 

  • Öztürk, K. (2002). Global climatic changes and their probable effect upon Turkey. Gazi University Journal of Gazi Educational Faculty., 22(1), 47–65.

    Google Scholar 

  • Phocaides, A. (2007). Handbook on pressurized irrigation techniques. Rome: Food & Agriculture Org.

    Google Scholar 

  • Republic of Turkey Ministry of Agriculture and Forestry. (2019). Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü, Sürdürülebilir Arazi Yönetimi ve İklim Dostu Tarım Projesi, http://www.cem.gov.tr/erozyon/AnaSayfa/havza_yeni/onemli_dis_kaynakl_havza_copy1/say_projesi.aspx?sflang=tr.

  • Republic of Turkey Ministry of Environment and Urbanization. (2019). Turkey’s National Climate Change Adaptation Strategy and Action Plan. http://www.dsi.gov.tr/docs/iklim-degisikligi/turkeys-national-climate-change-adaptation-strategy-and-action-plan.pdf.

  • Schaller, M., Barth, E. I., Blies, D., Röhrig, F., & Schümmelfeder, M. (2017). Climate smart agriculture (CSA): Climate smart agroforestry. https://core.ac.uk/download/pdf/132691631.pdf.

  • Şengül, Ü., Shiraz, S. E., & Miraç, E. (2013). Türkiye’de istatistiki bölge birimleri sınıflamasına göre düzey 2 bölgelerinin ekonomik etkinliklerinin DEA yöntemi ile belirlenmesi ve Tobit Model uygulaması. Yönetim Bilimleri Dergisi, 11(21), 75–99.

    Google Scholar 

  • Smith, P., Clark, H., Dong, H., Elsiddig, E. A., Haberl, H., Harper, R., House, J., Jafari, M., et al. (2014). Chapter 11—Agriculture, forestry and other land use (AFOLU). In: Climate change 2014: Mitigation of climate change. IPCC Working Group III Contribution to AR5. Cambridge University Press.

  • South Marmara Development Agency. (2019). Agriculture research report (in Turkish). https://www.gmka.gov.tr/dokumanlar/yayinlar/Tarim-Arastirma-Raporu.pdf.

  • Soydam, A. & Çakmak, B. (2006). Toplu Basınçlı Sulama Sistemlerinin Ekonomik Yönden Karşılaştırılması: Yaylak Projesi 1400 Nolu Yedeği Örneği, Tarim Bilimleri Dergisi, http://dergiler.ankara.edu.tr/dergiler/15/188/1555.pdf.

  • Steenwerth, K. L., Hodson, A. K., Bloom, A. J., Carter, M. R., Cattaneo, A., Chartres, C. J., et al. (2014). Climate-smart agriculture global research agenda: scientific basis for action. Agriculture & Food Security, 3(1), 11.

    Article  Google Scholar 

  • Taneja, G., Pal, B. D., Joshi, P. K., Aggarwal, P. K., & Tyagi, N. K. (2019). Farmers’ preferences for climate-smart agriculture—An assessment in the Indo-Gangetic Plain. In B. Pal, A. Kishore, P. Joshi, & N. Tyagi (Eds.), Climate smart agriculture in South Asia. Singapore: Springer.

    Google Scholar 

  • UNDP. (2019). United Nations development program, sustainable development goals. http://www.undp.org/content/undp/en/home/sustainable-development-goals/goal-12-responsible-consumption-and-production.html.

  • Uygur, S., & Uygur, F. N. (2010). Yabancı otların biyolojik mücadelesi. Türkiye Biyolojik Mücadele Dergisi, 1(1), 79–95.

    Google Scholar 

  • Vervoort, J. M., Thornton, P. K., Kristjanson, P., Förch, W., Ericksen, P. J., Kok, K., et al. (2014). Challenges to scenario-guided adaptive action on food security under climate change. Global Environmental Change, 28, 383–394.

    Article  Google Scholar 

  • Waibel, H., Pahlisch, T., H. & Völker, M. (2018). Farmers’ perceptions of and adaptations to climate change in Southeast Asia: The case study from Thailand and Vietnam. Natural Resource Management and Policy. 52. http://www.fao.org/3/a-i7931e.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengü Everest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Everest, B. Farmers’ adaptation to climate-smart agriculture (CSA) in NW Turkey. Environ Dev Sustain 23, 4215–4235 (2021). https://doi.org/10.1007/s10668-020-00767-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00767-1

Keywords

Navigation