Skip to main content
Log in

Exploring the effect of strong hydrological droughts and floods on populational parameters of Semaprochilodus insignis (Actinopterygii: Prochilodontidae) from the Central Amazonia

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

In Amazonia, commercially important fish species—such as Semaprochilodus insignis—are highly dependent on the hydrological regime, that is, the flood pulse. As waters begin to rise, this species migrates from nutrient-poor rivers to nutrient-rich rivers via their associated floodplains, using such habitats as spawning and nursery grounds. However, strong droughts or floods may alter such dynamics. Therefore, this study was aimed at answering the following questions: (1) Is there any relationship between the flood amplitude and the growth of S. insignis caught in the lower Solimões River? (2) Is there any relationship between the yearly maximum river level and the fishing mortality of S. insignis caught in the upper Amazon River? Growth parameters were estimated using the ELEFAN routine. Explanatory variables hypothesised to be relevant predictors of populational parameters were tested using multiple linear models. A 2-year-lagged effect of flood amplitude resulted in a decline in the growth of S. insignis. In contrast, in relation to years with the highest maximum water levels, an immediate and 1-year-lagged reduction in fishing mortality was observed. Therefore, despite the negative impact of years with high flood amplitude on the growth of this species, it is apparent that a sequence of years with La Niña influence helped in the recovery of S. insignis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agência Nacional de Águas—ANA. (2018). Portal HidroWeb—Séries Históricas de Estações. Retrieved January, 2018, from http://www.snirh.gov.br.

  • Albert, J. S., & Reis, R. E. (2011). Introduction to neotropical freshwaters. In J. S. Albert & R. E. Reis (Eds.), Historical biogeography of neotropical freshwater fishes (pp. 3–20). Berkeley, Los Angeles, CA: University of California.

    Google Scholar 

  • Araujo-Lima, C. A. R. M., & Ruffino, M. L. (2003). Migratory fishes of the Brazilian Amazon. In J. Carolsfeld, B. Harvey, C. Ross, & A. Baer (Eds.), Migratory fishes of South America: Biology, fisheries and conservation status (pp. 237–263). International Development for Research Centre and The World Bank.

  • Barthem, R., Marques, M., Charvet-Almeida, P., & Montag, L. F. A. (2005). Amazon River Basin: I—Characterization and environmental impacts due to deforestation. In E. Tiezzi (Ed.), Ecosystems and sustainable development V (pp. 615–625). Southampton: WIT Press.

    Google Scholar 

  • Barthem, R. B., & Fabré, N. N. (2004). Biologia e diversidade dos recursos pesqueiros da Amazônia. In M. L. Ruffino (Ed.), A pesca e os recursos pesqueiros na Amazônia brasileira (pp. 15–50). Manaus: ProVárzea, IBAMA.

    Google Scholar 

  • Batista, V. S., & Petrere Junior, M. (2003). Characterization of the commercial fish production landed at Manaus, Amazonas state, Brazil. Acta Amazonica, 33(1), 53–66.

    Article  Google Scholar 

  • Bittencourt, M. M., & Amadio, S. A. (2007). Proposta para identificação rápida dos períodos hidrológicos em áreas de várzea do rio Solimões-Amazonas nas proximidades de Manaus. Acta Amazonica, 37(2), 303–308.

    Article  Google Scholar 

  • Cadima, E. L. (2003). Fish stock assessment manual. FAO fisheries technical paper 393. Rome: Food and Agriculture Organization (FAO). Retrieved April, 2020 from http://www.fao.org/3/X8498E/x8498e0c.htm.

  • Damatac, A., & Santos, M. (2016). Possible effects of El Niño on some Philippine marine fisheries resources. Philippine Journal of Science, 145, 283–295.

    Google Scholar 

  • Garcia, S. M., Zerbi, A., Aliaume, C., Do Chi, T., & Lasserre, G. (2003). The ecosystems approach to fisheries. Issues, terminology, principles, institutional foundation, implementation and outlook. FAO fisheries technical paper no. 443. Rome: FAO. Retrieved February, 2019 from http://www.fao.org/3/a-y4773e.pdf.

  • Goulding, M., Barthem, R., & Ferreira, E. (2003). Atlas of the Amazon. Washington, DC: Smithsonian.

    Google Scholar 

  • Guerreiro, A. I. C., Ladle, R. J., & da Silva Batista, V. (2016). Riverine fishers’ knowledge of extreme climatic events in the Brazilian Amazonia. Journal of Ethnobiology and Ethnomedicine, 12, 50.

    Article  Google Scholar 

  • Gulland, J. A. (1969). Manual of methods for fish stock assessment-Part 1. Fish population analysis. Rome: Food and Agriculture Organization of the United Nations (FAO).

    Google Scholar 

  • Hoenig, N. A., & Hanumara, R. C. (1990). An empirical comparison of seasonal growth models. Fishbyte, 8(1), 32–34.

    Google Scholar 

  • IBGE. (2018). Estimativas-Estado do Amazonas/Brasil. Retrieved February, 2018 from https://cidades.ibge.gov.br/brasil/am/panorama.

  • Jakobsen, T., Fogarty, M. J., Megrey, B. A., & Moksness, E. (2016). Fish reproductive biology: Implications for assessment and management. Hoboken: Wiley Blackwell.

    Book  Google Scholar 

  • Junk, W. (1983). 4. Aquatic habitats in Amazonia. The Environmentalist, 3, 24–34.

    Google Scholar 

  • Junk, W. J. (1997). The Central Amazon Floodplain. Ecology of a pulsing system. Ecological studies (Vol. 126). Berlin: Springer.

    Google Scholar 

  • Junk, W. J., Bailey, P. B., & Sparks, R. E. (1989). The flood pulse concept in river-floodplain systems. Canadian Special Publication for Fisheries and Aquatic Sciences, 106, 110–127.

    Google Scholar 

  • Junk W. J., & Wantzen, K. M. (2004). The flood pulse concept: New approaches and applications—An update. In RL Welcomme & T. Petr (Eds.), Proceeding of the second international symposium on the management of large rivers for fishers (pp. 117–140). Food and Agriculture Organization of the United Nations and The Mekong River Commission.

  • Kirkwood, G., Aukland, R., & Zara, S. (2001). Fisheries biology, assessment and management (LFDA). London: MRAG Ltd.

    Google Scholar 

  • Kluger, L. C., Kochalski, S., Aguirre-Velarde, A., Vivar, I., & Wolff, M. (2018). Coping with abrupt environmental change: the impact of the coastal El Niño 2017 on artisanal fisheries and mariculture in North Peru. ICES Journal of Marine Science. https://doi.org/10.1093/icesjms/fsy171.

    Article  Google Scholar 

  • Kumar, P., Pillai, G. N., & Manjusha, U. (2014). El Nino Southern Oscillation (ENSO) impact on tuna fisheries in Indian Ocean. SpringerPlus, 3(1), 591.

    Article  Google Scholar 

  • Lake, P. S. (2011). Drought and aquatic ecosystems: Effects and response. Hoboken: Wiley & Blackwell.

    Book  Google Scholar 

  • Leite, R. G., & Araujo-Lima, C. A. R. M. (2002). Feeding of the Brycon cephalus, Triportheus elongatus and Semaprochilodus insignis (osteichthyes, characiformes) larvae in Solimões/Amazonas River and floodplain areas. Acta Amazonica, 32(3), 499–515.

    Article  Google Scholar 

  • Li, W., Zhang, P., Ye, J., Li, L., & Baker, P. (2011). Impact of two different types of El Niño events on the Amazon climate and ecosystem productivity. Journal of Plant Ecology, 4(1–2), 91–99.

    Article  Google Scholar 

  • Lima, A. C., & Araújo-Lima, C. A. R. M. (2004). The distributions of larval and juvenile fishes in Amazonian rivers of different nutrient status. Freshwater Biology, 49, 787–800.

    Article  Google Scholar 

  • Magnuson, J. J. (1995). The invisible present. Chapter 19. In T. M. Powell & J. H. Steele (Eds.), Ecological time series. London: Chapman & Hall.

    Google Scholar 

  • Maino, J. L., Kearney, M. R., Nisbet, R. M., & Kooijman, S. A. L. M. (2014). Reconciling theories for metabolic scaling. Journal of Animal Ecology, 83(1), 20–29.

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration/U.S. Department of Commerce—NOAA. (2018). El Niño/La Niña—Climate Prediction Center. Retrieved December, 2018, from https://ggweather.com/enso/oni.htm.

  • Ñiquen, M., & Bouchon, M. (2004). Impact of El Niño events on pelagic fisheries in Peruvian waters. Deep-Sea Research Part II: Topical Studies in Oceanography, 51(6–9), 563–574.

    Article  Google Scholar 

  • Porto de Manaus (2018). Nível do Rio Negro [Level of Negro River]. Retrieved June, 2018 from https://www.portodemanaus.com.br.

  • Powers, D. A., Martin, J. P., Garlick, R. L., Fyhn, H. J., & Fyhn, U. E. H. (1979). The effect of temperature on the oxygen equilibria of fish haemoglobins in relation to environmental thermal variability. Comparative Biochemistry and Physiology Part A: Physiology, 62(1), 87–94.

    Article  Google Scholar 

  • R Development Core Team. (2013). R: A language and environment for statistical computing. Austria: R Foundation for Statistical Computing. Retrieved January, 2013 from http://www.R-project.org.

  • Ruffino, M. L., Soares e Silva, E. C., Da Silva, C. O., Barthem, R. B., Silva, V. B., Estupinan, G., et al. (2006). Estatística pesqueira do Amazonas e Pará— 2003. Manaus.

  • Salin, K., Auer, S. K., Rey, B., Selman, C., & Metcalfe, N. B. (2015). Variation in the link between oxygen consumption and ATP production, and its relevance for animal performance. Proceedings of the Royal Society B: Biological Sciences, 282(1812), 20151028.

    Article  Google Scholar 

  • Santos, G., Ferreira, E., & Zuanon, J. (2006). Peixes comerciais de Manaus. Manaus: IBAMA.

    Google Scholar 

  • Schwassmann, H. O. (1992). Seasonality of reproduction in Amazonian Fishes. In W. C. Hamlett (Ed.), Reproductive biology of South American vertebrates (pp. 71–81). Berlin: Springer.

    Chapter  Google Scholar 

  • Sparre, P., & Venema, S. C. (1998). Introduction to tropical fish stock assessment, Part I: Manual. FAO fisheries technical paper no 306. Retrieved May, 2016 from https://iwlearn.net/resolveuid/bae3ae95-2b5c-4969-ae69-cc627d4a5c89.

  • Stenseth, N. C. (2002). Ecological effects of climate fluctuations. Science, 297(5585), 1292–1296.

    Article  CAS  Google Scholar 

  • Tomasella, J., Borma, L. S., Marengo, J. A., Rodriguez, D. A., Cuartas, L. A., Nobre, C. A., et al. (2010). The droughts of 1996–1997 and 2004–2005 in Amazonia: Hydrological response in the river main stem. Hydrological Processes, 25(8), 1228–1242.

    Article  Google Scholar 

  • Val, A. L., Fearnside, P. M., & Almeida-Val, V. M. F. (2016). Environmental disturbances and fishes in the Amazon. Journal of Fish Biology, 89(1), 192–193.

    Article  CAS  Google Scholar 

  • Welcomme, R., & Halls, A. (2004). Dependence of tropical river fisheries on flow. In R. L. Welcomme & T. Petr (Eds.), Proceedings of the 2nd international symposium on the management of large rivers for fisheries (Vol. II). Bangkok, Thailand: FAO Regional Office for Asia and the Pacific. Retrieved May, 2019 from http://www.fao.org/apfic/publications/detail/en/c/419698/.

  • Welcomme, R. L. (1997). Inland fisheries. Food and Agriculture Organization of the United Nations—FAO.

  • Winemiller, K. (2004). Floodplain river food webs: Generalizations and implications for fisheries management. In R. Welcomme & T. Petr (Eds.), Proceedings of the 2nd international symposium on the management of large rivers for fisheries (Vol. II). FAO. https://doi.org/10.1017/CBO9781107415324.004.

  • Winemiller, K. O., & Jepsen, D. B. (2004). Migratory neotropical fishes subsidize food webs of oligotrophic blackwater rivers. Chapter 8. In G. A. Polis, M. E. Power & G. R. Huxel (Eds.), Food webs at the landscape level (pp. 115–132). Chicago: The University of Chicago Press.

    Google Scholar 

  • Zapata Padilla, L. A. (2002). Effects of El Niño and La Niña on the Fisheries of the Colombian Pacific. Investigaciones Marinas. https://doi.org/10.4067/S0717-71782002030100090.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are most grateful to the fishers who collaborated in this study and the team that colleted fishing data analysed in this work. This study was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (AICG Grant), the Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais (Provárzea – IBAMA), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Fundação Banco do Brasil and the Superintendência do Desenvolvimento da Amazônia (SUDAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Isabel Camacho Guerreiro.

Ethics declarations

Conflict of interst

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camacho Guerreiro, A.I., Amadio, S.A., Fabré, N.N. et al. Exploring the effect of strong hydrological droughts and floods on populational parameters of Semaprochilodus insignis (Actinopterygii: Prochilodontidae) from the Central Amazonia. Environ Dev Sustain 23, 3338–3348 (2021). https://doi.org/10.1007/s10668-020-00721-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00721-1

Keywords

Navigation