Skip to main content
Log in

Modelling the Effect of Weather Conditions on Cyanobacterial Bloom Outbreaks in Lake Dianchi: a Rough Decision-Adjusted Logistic Regression Model

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Lake Dianchi, one of the main water sources for Kunming, China, experiences severe cyanobacterial blooms due to rapid urbanization and local industrial development. Scientific interest in the mechanisms that cause blooms has been increasing. An integrated model combining rough set theory with binary logistic regression was used to examine the correlation between weather conditions and cyanobacterial blooms in Lake Dianchi based on daily monitoring data. The binary logistic regression yielded quantitative correlations between cyanobacterial blooms and the assessed meteorological variables, including temperature, wind velocity, and wind direction. The rough decision process connected the weather conditions and cyanobacterial blooms, which were used to verify the binary regression model results. It was shown that by comparing the methods, the rough decision-adjusted binary logistic regression model significantly improved model accuracy. The integrated model of cyanobacterial blooms in Lake Dianchi may inform decision-makers at local water purification plants of the water quality in the lake and assist them in making more cost-effective decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., et al. (2009). Controlling eutrophication: nitrogen and phosphorus. Science, 323, 1014–1015.

    Article  CAS  Google Scholar 

  2. Jorgensen, S. E. (1983). Applications in ecological engineering. New York: Academic.

    Google Scholar 

  3. Steinberg, C. E. W., & Hartmann, H. M. (1988). Planktonic bloom-forming cyanobacteria and the eutrophication of lake and rivers. Freshwater Biology, 20, 279–287.

    Article  Google Scholar 

  4. Ministry of Environmental Protection of the People's Republic of China. (2009). 2008 yearly environment status report of China. http://jcs.mep.gov.cn/hjzl/zkgb/2008zkgb/. Accessed 2 Feb 2010.

  5. Pieczynska, E., & Tarmanowska, A. (1996). Effect of decomposing filamentous algae on the growth of Elodea canadensis Michx. (a laboratory experiment). Aquatic Botany, 54, 313–319.

    Article  Google Scholar 

  6. Ren, J., Zhou, H., & Sun, Y. (1997). Vertical distribution of light intensity and light compensation depth of submerged macrophyte in Lake Dianchi. Acta Scicentiarum Naturalum Universitis Pekinesis, 33, 211–214.

    Google Scholar 

  7. Bayley, S. E., & Prather, C. M. (2003). Do wetland lakes exhibit alternative stable states? Submersed aquatic vegetation and chlorophyll in western boreal shallow lakes. Limnology and Oceanography, 48, 2335–2345.

    Article  CAS  Google Scholar 

  8. Song, Y., Qin, B., & Gao, G. (2007). Effect of nutrient on periphytic algae and phytoplankton. Journal of Lake Sciences, 19, 125–130.

    CAS  Google Scholar 

  9. MacKintosh, C., Beattie, K. A., Klumpp, S., Cohen, P., & Codd, G. A. (1990). Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Letters, 264, 187–192.

    Article  CAS  Google Scholar 

  10. Donk, E., & Hessen, D. O. (1993). Grazing resistance in nutrient-stressed phytoplankton. Oeclogia, 93, 508–511.

    Article  Google Scholar 

  11. Tang, D. L., Kester, D. R., Ni, I.-H., Qi, Y. Z., & Kawamura, H. (2003). In situ and satellite observations of a harmful algal bloom and water condition at the Pearl River estuary in late autumn 1998. Harmful Algae, 2, 89–99.

    Article  CAS  Google Scholar 

  12. Zhou, Y., Zhou, W.-Q., Wang, S.-X., & Zhang, B. (2004). Application of remote sensing technique to inland water quality monitoring. Advances in Water Science, 15, 312–317.

    CAS  Google Scholar 

  13. Bell, S. G., & Godd, G. A. (1994). Cyanobacteria toxins and human health. Reviews in Medical Microbiology, 5, 256–264.

    Article  Google Scholar 

  14. Yoshida, T., Makita, Y., Nagata, S., Tsutsumi, T., Yoshida, F., Sekijima, M., et al. (1997). Acute oral toxicity of microsytin-LR. A cyanobacterial hepatotoxin, in mice. Natural Toxins, 5, 91–95.

    Article  CAS  Google Scholar 

  15. Li, X., Liu, Y., Song, L., & Liu, J. (2003). Response of antioxidant systems in the hepatocytes of common carp (Cyprinus capio L.) to the toxicity of microcystin-LR. Toxicon, 42, 85–89.

    Article  CAS  Google Scholar 

  16. Kanoshina, I., Lips, U., & Leppänen, J.-M. (2003). The influence of weather conditions (temperature and wind) on cyanobacterial bloom development in the Gulf of Finland (Baltic Sea). Harmful Algae, 2, 29–41.

    Article  Google Scholar 

  17. Davis, T. W., Berry, D. B., Boyer, G. L., & Gobler, G. J. (2009). The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae, 8, 715–725.

    Article  CAS  Google Scholar 

  18. Stal, L. J., Staal, M., & Villbrandt, M. (1999). Nutrient control of cyanobacterial bloom in the Baltic Sea. Aquatic Microbial Ecology, 18, 165–173.

    Article  Google Scholar 

  19. Paerl, H. W. (1996). A comparison of cyanobacterial bloom dynamics in freshwater, estuarine and marine environments. Phycologia, 35, 25–35.

    Article  Google Scholar 

  20. Kameyama, K., Sugiura, N., Lsoda, H., & Maekawa, T. (2002). Effect of nitrate and phosphate concentration on production of microcystins by Microcystis viridis NIES 102. Aquatic Ecosystem Health & Management, 5, 443–449.

    Article  CAS  Google Scholar 

  21. Zhang, W., Lin, Y.-Q., Guo, D.-F., Fu, J.-J., & Zhao, Y.-J. (2006). Influence of different nitrogen and phosphorus concentrations on growth, photosynthesis and microcystin production of Microcystis aeruginsa. Acta Hydobiologica Sinica, 30, 318–322.

    CAS  Google Scholar 

  22. Zheng, S., Yang, S., & Jin, X. (2005). Dynamic studies on the effect of nutrients on the growth of Microsytis aeruginosa. Chinese Journal of Environmental Science, 26, 152–156.

    CAS  Google Scholar 

  23. Jin, X.-C., Li, Z.-C., Zheng, S.-F., Yang, S.-W., Hu, X.-Z., & Chu, Z.-S. (2004). Studies on the growth characteristics of Microcytis aeruginosa. Research of Environmental Sciences, 17, 52–54.

    Google Scholar 

  24. Smith, V. H., Bierman, V. J., Jones, B. L., & Havens, K. E. (1995). Historical trends in the Lake Okeechobee ecosystem IV. Nitrogen:phosphorus ratios, cyanobacterial dominance, and nitrogen fixation potential. Archiv für Hydrobiologie, 107, 71–88.

    CAS  Google Scholar 

  25. Verkhozina, V. A., Kozhova, O. M., & Kusner, Y. S. (2000). Hydrodynamics as a limiting factor in the Lake Baikal ecosystem. Aquatic Ecosystem Health & Management, 3, 203–210.

    Article  Google Scholar 

  26. Zhang, Y.-M., Zhang, Y.-C., Zhang, L.-J., Gao, Y.-X., & Zhao, Y. (2007). The influence of lake hydrodynamics on blue algal growth. China Environmental Science, 27, 707–711.

    CAS  Google Scholar 

  27. Qin, B., Hu, W., Gao, G., Luo, L., & Zhang, J. (2004). Dynamics of sediment resuspension and the conceptual schema of nutrient release in the large shallow Lake Taihu, China. Chinese Science Bulletin, 49, 54–64.

    Google Scholar 

  28. Anderson, E. J., & Schwab, D. J. (2011). Relationships between wind-driven and hydraulic flow in Lake St. Clair and the St. Clair River Delta. Journal of Great Lakes Research, 37, 147–158.

    Article  Google Scholar 

  29. Cai, Q. M. (1998). Environmental and ecological studies of Lake Tai (I). Beijing: China Meteorological Press.

    Google Scholar 

  30. Ahn, C.-Y., Chung, A.-S., & Oh, H.-M. (2002). Rainfall, phycocyanin, and N:P ratios related to cyanobacterial blooms in a Korean large reservoir. Hydrobiologia, 474, 117–124.

    Article  CAS  Google Scholar 

  31. Brunberg, A.-K., & Blomqvist, P. (2002). Benthic overwintering of Microcystis colonies of under different environmental conditions. Journal of Plankton Research, 24, 1247–1252.

    Article  Google Scholar 

  32. Jin, X. C., Chu, Z. S., Yang, B., Zheng, S. F., Pang, Y., & Zeng, Q. R. (2008). Effects of temperature on growth, photosynthesis and buoyancy regulation of the cyanobacteria Microcystis flosaquae and Planktothrix mougeotii. Acta Scientiae Circumstantiae, 28, 50–55.

    CAS  Google Scholar 

  33. Gross, E. M., Meyer, H., & Schilling, G. (1996). Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry, 41, 133–138.

    Article  CAS  Google Scholar 

  34. Oliver, W., Walter, Z., & Elisabeth, M. (2002). Influence of Myriophyllum spicatum derived tannins on gut microbiota of its herbivore Acentria ephemerella. Journal of Chemical Ecology, 28, 2045–2056.

    Article  Google Scholar 

  35. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591–596.

    Article  CAS  Google Scholar 

  36. Kajak, Z., Rybak, J. I., Spodniewska, I., & Gadlewska-Lipowa, W. A. (1975). Influence of the planktivorous fish, Hypophthalmichthys molitrix, on the plankton and benthos of the eutrophic lake. Polskie Archiwum Hydrobiologii, 22, 301–310.

    Google Scholar 

  37. Wan, N., Song, L.-R., Wang, R.-N., & Liu, J.-T. (2008). The spatio-temporal distribution of algal biomass in Dianchi Lake and its impact factors. Acta Hydrobiologica Sinica, 32, 184–188.

    Article  CAS  Google Scholar 

  38. Wang, C.-M., Xie, Z.-C., Song, L.-R., Xiao, B.-D., Li, G.-B., & Li, L. (2011). Dianchi Lake macroinvertebrate community succession trends and retrogressive analysis. Zoological Research, 32, 212–221.

    Google Scholar 

  39. Song, R.-B., Han, Y.-P., Pan, M., He, F., & Guo, Y.-Y. (2011). Preliminary investigation and analysis on the submerged plants ecological environment and distribution characteristics in Outer Dianchi Lake. Environmental Science Survey, 30, 61–64.

    Google Scholar 

  40. Kahru, M., Horstmann, U., & Rud, O. (1994). Satellite detection of increased cyanobacteria blooms in the Baltic Sea: natural fluctuation or ecosystem change? Ambio, 23, 469–472.

    Google Scholar 

  41. Onderka, M. (2007). Correlations between several environmental factors affecting the bloom events of cyanobacteria in Liptovska Mara reservoir (Slovakia)—a simple regression model. Ecological Modelling, 209, 412–416.

    Article  Google Scholar 

  42. Janssen, F., Neumann, T., & Schmidt, M. (2004). Inter-annual variability in cyanobacteria blooms in the Baltic Sea controlled by wintertime hydrographic conditions. Marine Ecology Progress Series, 275, 59–68.

    Article  CAS  Google Scholar 

  43. Laanemets, J., Lilover, M.-J., Raudsepp, U., Autio, R., Vahtera, E., Lips, I., et al. (2006). A fuzzy logic model to describe the Cyanobacteria Nodularia spumigena blooms in the Gulf of Finland, Baltic Sea. Hydrobiologia, 554, 31–45.

    Article  Google Scholar 

  44. Pai, P.-F., & Lee, F.-C. (2010). A rough set based model in water quality analysis. Water Resources Management, 24, 2405–2418.

    Article  Google Scholar 

  45. Golan, R., Ziarko, W. (1995). Methodology for stock market analysis utilizing rough set theory. Paper presented at the IEEE/IAEE Conference on Computational Intelligence for Financial Engineering, New Jersey, 9–11 April 1995.

  46. Pawlak, Z. (2002). Rough set theory and its application. Journal of Telecommunications and Information Technology, 3, 7–10.

    Google Scholar 

  47. DeMaris, A. (1995). A tutorial in logistic regression. Journal of Marriage and the Family, 57, 956–968.

    Article  Google Scholar 

  48. Kerber, R. (1992). ChiMerge: discretization of numeric attribute. AAAI-92 Proceedings, 123–128.

Download references

Acknowledgments

This research was conducted with the support of the “China National Water Pollution Control Program” (2008ZX07102-001) and the National Natural Science Foundation of China (grant no. 41101567 and no. 40701066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wang.

Appendix

Appendix

1.1 Twenty-five Rules Used in RDALR Model

  1. 1.
    $$ {\text{A}}{{\text{T}}_{{3}}} \wedge {\text{H}}{{\text{T}}_{{2}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{2}}} \wedge {\text{W}}{{\text{D}}_{{2}}} \wedge {\text{S}}{{\text{D}}_4} \to {y_0} $$
  2. 2.
    $$ {\text{A}}{{\text{T}}_{{4}}} \wedge {\text{H}}{{\text{T}}_{{2}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{3}}} \wedge {\text{W}}{{\text{D}}_{{2}}} \wedge {\text{S}}{{\text{D}}_{{4}}} \to {y_0} $$
  3. 3.
    $$ {\text{A}}{{\text{T}}_{{3}}} \wedge {\text{H}}{{\text{T}}_{{1}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{3}}} \wedge {\text{W}}{{\text{D}}_{{3}}} \wedge {\text{S}}{{\text{D}}_{{5}}} \to {y_0} $$
  4. 4.
    $$ {\text{A}}{{\text{T}}_{{3}}} \wedge {\text{H}}{{\text{T}}_{{1}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{2}}} \wedge {\text{W}}{{\text{D}}_{{3}}} \wedge {\text{S}}{{\text{D}}_{{4}}} \to {y_0} $$
  5. 5.
    $$ {\text{A}}{{\text{T}}_{{4}}} \wedge {\text{H}}{{\text{T}}_{{3}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{3}}} \wedge {\text{W}}{{\text{D}}_{{3}}} \wedge {\text{S}}{{\text{D}}_{{5}}} \to {y_0} $$
  6. 6.
    $$ {\text{A}}{{\text{T}}_{{2}}} \wedge {\text{H}}{{\text{T}}_{{3}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{1}}} \wedge {\text{W}}{{\text{D}}_{{3}}} \wedge {\text{S}}{{\text{D}}_{{5}}} \to {y_0} $$
  7. 7.
    $$ {\text{A}}{{\text{T}}_{{4}}} \wedge {\text{H}}{{\text{T}}_{{3}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{2}}} \wedge {\text{W}}{{\text{D}}_{{3}}} \wedge {\text{S}}{{\text{D}}_{{5}}} \to {y_0} $$
  8. 8.
    $$ {\text{A}}{{\text{T}}_4} \wedge {\text{H}}{{\text{T}}_3} \wedge {\text{L}}{{\text{T}}_2} \wedge {\text{HV}}{{\text{V}}_1} \wedge {\text{W}}{{\text{D}}_2} \wedge {\text{S}}{{\text{D}}_4} \to {y_1} $$
  9. 9.
    $$ {\text{A}}{{\text{T}}_{{4}}} \wedge {\text{H}}{{\text{T}}_{{3}}} \wedge {\text{L}}{{\text{T}}_2} \wedge {\text{HV}}{{\text{V}}_{{1}}} \wedge {\text{W}}{{\text{D}}_{{3}}} \wedge {\text{S}}{{\text{D}}_{{4}}} \to {y_1} $$
  10. 10.
    $$ {\text{A}}{{\text{T}}_{{2}}} \wedge {\text{H}}{{\text{T}}_{{1}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{1}}} \wedge {\text{W}}{{\text{D}}_1} \wedge {\text{S}}{{\text{D}}_3} \to {y_1} $$
  11. 11.
    $$ {\text{A}}{{\text{T}}_{{2}}} \wedge {\text{H}}{{\text{T}}_{{1}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{1}}} \wedge {\text{W}}{{\text{D}}_{{2}}} \wedge {\text{S}}{{\text{D}}_{{3}}} \to {y_1} $$
  12. 12.
    $$ {\text{A}}{{\text{T}}_{{1}}} \wedge {\text{H}}{{\text{T}}_{{1}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{2}}} \wedge {\text{W}}{{\text{D}}_{{3}}} \wedge {\text{S}}{{\text{D}}_{{4}}} \to {y_0} $$
  13. 13.
    $$ {\text{A}}{{\text{T}}_{{3}}} \wedge {\text{H}}{{\text{T}}_{{1}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{3}}} \wedge {\text{W}}{{\text{D}}_{{3}}} \wedge {\text{S}}{{\text{D}}_{{4}}} \to {y_0} $$
  14. 14.
    $$ {\text{A}}{{\text{T}}_{{4}}} \wedge {\text{H}}{{\text{T}}_{{2}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{2}}} \wedge {\text{W}}{{\text{D}}_{{3}}} \wedge {\text{S}}{{\text{D}}_{{4}}} \to {y_0} $$
  15. 15.
    $$ {\text{A}}{{\text{T}}_{{3}}} \wedge {\text{H}}{{\text{T}}_{{2}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{1}}} \wedge {\text{W}}{{\text{D}}_{{3}}} \wedge {\text{S}}{{\text{D}}_{{4}}} \to {y_0} $$
  16. 16.
    $$ {\text{A}}{{\text{T}}_{{4}}} \wedge {\text{H}}{{\text{T}}_{{1}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{2}}} \wedge {\text{W}}{{\text{D}}_{{3}}} \wedge {\text{S}}{{\text{D}}_{{4}}} \to {y_0} $$
  17. 17.
    $$ {\text{A}}{{\text{T}}_{{4}}} \wedge {\text{H}}{{\text{T}}_{{3}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{1}}} \wedge {\text{W}}{{\text{D}}_{{3}}} \wedge {\text{S}}{{\text{D}}_{{4}}} \to {y_1} $$
  18. 18.
    $$ {\text{A}}{{\text{T}}_4} \wedge {\text{H}}{{\text{T}}_{{3}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{1}}} \wedge {\text{W}}{{\text{D}}_{{2}}} \wedge {\text{S}}{{\text{D}}_{{4}}} \to {y_1} $$
  19. 19.
    $$ {\text{A}}{{\text{T}}_{{3}}} \wedge {\text{H}}{{\text{T}}_{{1}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{1}}} \wedge {\text{W}}{{\text{D}}_{{1}}} \wedge {\text{S}}{{\text{D}}_{{3}}} \to {y_1} $$
  20. 20.
    $$ {\text{A}}{{\text{T}}_{{2}}} \wedge {\text{H}}{{\text{T}}_{{2}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{2}}} \wedge {\text{W}}{{\text{D}}_{{3}}} \wedge {\text{S}}{{\text{D}}_{{4}}} \to {y_0} $$
  21. 21.
    $$ {\text{A}}{{\text{T}}_{{2}}} \wedge {\text{H}}{{\text{T}}_{{1}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{3}}} \wedge {\text{W}}{{\text{D}}_{{3}}} \wedge {\text{S}}{{\text{D}}_{{2}}} \to {y_0} $$
  22. 22.
    $$ {\text{A}}{{\text{T}}_{{3}}} \wedge {\text{H}}{{\text{T}}_{{2}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{3}}} \wedge {\text{W}}{{\text{D}}_{{3}}} \wedge {\text{S}}{{\text{D}}_{{4}}} \to {y_0} $$
  23. 23.
    $$ {\text{A}}{{\text{T}}_{{4}}} \wedge {\text{H}}{{\text{T}}_{{1}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{3}}} \wedge {\text{W}}{{\text{D}}_{{3}}} \wedge {\text{S}}{{\text{D}}_{{4}}} \to {y_0} $$
  24. 24.
    $$ {\text{A}}{{\text{T}}_{{2}}} \wedge {\text{H}}{{\text{T}}_{{1}}} \wedge {\text{L}}{{\text{T}}_{{1}}} \wedge {\text{HV}}{{\text{V}}_{{2}}} \wedge {\text{W}}{{\text{D}}_{{2}}} \wedge {\text{S}}{{\text{D}}_{{4}}} \to {y_1} $$
  25. 25.
    $$ {\text{A}}{{\text{T}}_{{4}}} \wedge {\text{H}}{{\text{T}}_{{2}}} \wedge {\text{L}}{{\text{T}}_{{2}}} \wedge {\text{HV}}{{\text{V}}_{{2}}} \wedge {\text{W}}{{\text{D}}_{{2}}} \wedge {\text{S}}{{\text{D}}_{{4}}} \to {y_0} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Wang, Z., Guo, H. et al. Modelling the Effect of Weather Conditions on Cyanobacterial Bloom Outbreaks in Lake Dianchi: a Rough Decision-Adjusted Logistic Regression Model. Environ Model Assess 18, 199–207 (2013). https://doi.org/10.1007/s10666-012-9333-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-012-9333-3

Keywords

Navigation