Skip to main content

Advertisement

Log in

A Spatially Explicit Model for Estimating Annual Average Loads of Nonpoint Source Nutrient at the Watershed Scale

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The overloaded nonpoint source (NPS) nutrients in upper streams always result in the nutrient enrichment at lakes and estuaries downstream. As NPS pollution has become a serious environmental concern in watershed management, the information about nutrient output distribution across a watershed has been critical in the designing of regional development policies. But existing watershed evaluation models often encounter difficulties in application because of their complicated structures and strict requirements for the input data. In this paper, a spatially explicit and process-based model, Integrated Grid’s Exporting and Delivery model, was introduced to estimate annual in-stream nutrient levels. Each grid cell in this model was regarded as having potentials of both exporting new nutrients and trapping nutrients passing by. The combined nutrient dynamics of a grid is mainly determined by the grid’s features in land use/land cover, soil drainage, and geomorphology. This simple-concept model was tested at some basins in north Georgia in the USA. Stations in one basin were used to calibrate the model. Then an external validation was employed by applying the calibrated model to stations in the other neighbor basins. Model evaluation statistics implied the model’s validity and good performance in estimating the annual NPS nutrients’ fluxes at the watershed scale. This study also provides a promising prospect that in-stream annual nutrient loads can be accurately estimated from a few public available datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alexander, R. B., Boyer, E. W., Smith, R. A. , Schwarz, G. E., & Moore, R. B. (2007). The role of headwater streams in downstream water quality. Journal of the American Water Resources Association, 43, 41–59.

    Article  CAS  Google Scholar 

  2. Baker, M. E., Weller, D. E., & Jordan, T. E. (2007). Effects of stream map resolution on measures of riparian buffer distribution and nutrient retention potential. Landscape Ecology, 22, 973–992.

    Article  Google Scholar 

  3. Beaulac, M. N., & Reckhow, K. H. (1982). An examination of land use-nutrient export relationships. Water Resources Bulletin, 18, 1013–1024.

    CAS  Google Scholar 

  4. Beven, K. (1995). Linking parameters across scales: Subgrid parameterizations and scale dependent hydrological models. Hydrological Processes, 9, 509–525.

    Article  Google Scholar 

  5. Beven, K., & Binley, A. (1992). The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 6, 279–298.

    Article  Google Scholar 

  6. Bhaduri, B., Harbor, J., Engel, B., & Grove, M. (2000). Assessing watershed-scale, long-term hydrologic impacts of land-use change using a GIS-NPS model. Environmental Management, 26, 643–658.

    Article  Google Scholar 

  7. Blöschl, G., & Sivapalan, M. (1995). Scale issues in hydrological modelling: A review. Hydrological Processes, 9, 251–290.

    Article  Google Scholar 

  8. Borah, D. K., & Bera, M. (2003). Watershed-scale hydrologic and nonpoint-source pollution models: Review of mathematical bases. Transactions of the ASAE, 46, 1553–1566.

    Google Scholar 

  9. Borah, D. K., & Bera. M. (2004). Watershed-scale hydrologic and nonpoint-source pollution models: Review of applications. Transactions of the ASAE, 47, 789–803.

    CAS  Google Scholar 

  10. Bouraoui, F. (1994). Development of a continuous, physically-based, distributed parameter, nonpoint source model. Ph.D. dissertation, Blacksburg, Virginia: Virginia Polytechnic Institute and State University.

  11. Breuer, L., Vaché, K. B., Julich, S., & Frede, H.-G. (2008). Current concepts in nitrogen dynamics for mesoscale catchments. Hydrological Sciences Journal, 53, 1059–1074.

    Article  CAS  Google Scholar 

  12. Canham, C. D., Pace, M. L., Papaik, M. J., Primack, A. G. B., Roy, K. M., Maranger, R. J., et al. (2004). A spatially-explicit watershed-scale analysis of dissolved organic carbon in Adirondack lakes. Ecological Applications, 14, 839–854.

    Article  Google Scholar 

  13. Canham, C. D., & Pace, M. L. (2008). A spatially explicit, mass-balance analysis of watershed-scale controls on lake chemistry. In S. Miao, S. Carstenn, & M. Nungesser (Eds.), Real world ecology: Large-scale and long-term case studies and methods (pp. 209–233). New York: Springer.

    Google Scholar 

  14. Carpenter, S. R., Caraso, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8, 559–568.

    Article  Google Scholar 

  15. Chen, E., & Mackay, D. S. (2004). Effects of distribution-based parameter aggregation on a spatially distributed agricultural nonpoint source pollution model. Journal of Hydrology, 295, 211–224.

    Article  Google Scholar 

  16. Cohn, T. A., Caulder, D. L., Gilroy, E. J., Zynjuk, L. D., & Summers, R. M. (1992). The validity of a simple statistical model for estimating fluvial constituent loads: An empirical study involving nutrient loads entering Chesapeake Bay. Water Resources Research, 28, 2353–2363.

    Article  CAS  Google Scholar 

  17. Corwin, D. L., Letey, J. Jr., & Carrillo, M. L. K. (1999). Modeling non-point source pollutants in the vadose zone: Back to the basics. In D. L. Corwin, K. Loague, & T. R. Ellsworth (Eds.), Assessment of non-point source pollution in the vadose zone (pp. 323–342). Geophysical Monograph 108. Washington: American Geophysical Union.

    Google Scholar 

  18. Corwin, D. L., Loague, K., & Ellsworth, T. R. (1999). Introduction: Assessing non-point source pollution in the vadose zone with advanced information technologies. In D. L. Corwin, K. Loague, & T. R. Ellsworth (Eds.), Assessment of non-point source pollution in the vadose zone (pp. 1–20). Geophysical Monograph 108. Washington: American Geophysical Union.

    Google Scholar 

  19. Croke, B. F. W., Merritt, W. S., & Jakeman, A. J. (2004). A dynamic model for predicting hydrologic response to land cover changes in gauged and ungauged catchments. Journal of Hydrology, 291, 115–131.

    Article  Google Scholar 

  20. Diebel, M. W., Maxted, J. T., Nowak, P. J., & Vander Zanden, M. J. (2008). Landscape planning for agricultural nonpoint source pollution reduction I: A geographical allocation framework. Environmental Management, 42, 789–802.

    Article  Google Scholar 

  21. Draper, D. W., Robinson, J. B., & Coote, D. R. (1979). Estimation and management of the contribution by manure from livestock in the Ontario Great Lakes basin to the phosphorus loading of the Great Lakes. In Best management practices for agriculture and silviculture proceedings of the 1978 Cornell agricultural waste management conference (pp. 159–174).

  22. Duba, A. M. (1993). Addressing nonpoint sources of water pollution must become an international priority. Water Science Technology, 28, 1–11.

    Google Scholar 

  23. Endreny, T. A., & Wood, E. F. (2003). Watershed weighting of export coefficients to map critical phosphorous loading areas. Journal of the American Water Resources Association, 39, 165–181.

    Article  Google Scholar 

  24. Frick, E. A., Hippe, D. J., Buell, G. R., Couch, C. A., Hopkins, E. H., Wangsness, D. J., et al. (1998). Water quality in the Apalachicola-Chattahoochee-Flint River Basin (Georgia, Alabama, and Florida, 1992–95). Denver: U.S. Geological Survey Circular 1164.

    Google Scholar 

  25. Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The soil and water assessment tool: Historical development, applications and future research directions. Transactions of the American Society of Agricultural and Biological Engineers, 50, 1211–1250.

    CAS  Google Scholar 

  26. Georgia EPD (1997). Chattahoochee River Basin Management Plan 1997. Atlanta: Georgia Environmental Protection Division, Georgia Department Natural Resources.

    Google Scholar 

  27. Giasson, E., Bryant, R. B., & DeGloria, S. D. (2002). GIS-based spatial indices for identification of potential phosphorous export at watershed scale. Journal of Soil and Water Conservation, 57, 373–381.

    Google Scholar 

  28. Hanrahan, G., Gledhill, M., House, W. A., & Worsfold, P. J. (2001). Phosphorus loading in the Frome catchment, UK: Seasonal refinement on the coefficient modeling approach. Journal of Environmental Quality, 30, 1738–1746.

    Article  CAS  Google Scholar 

  29. Hillel, D. (1987). Modeling in soil physics: A critical review. In L. L. Boersma (Ed.), Future developments in soil science research (pp. 35–42). Madison: Soil Society of America.

    Google Scholar 

  30. Johnes, P. J., Moss, B., & Phillips, G. (1996). The determinations of total nitrogen and total phosphorus concentrations in freshwaters from land use, stock headage and population data: Testing of a model for use in conservation and water quality management. Freshwater Biology, 36, 451–473.

    Article  CAS  Google Scholar 

  31. Krysanova, V., Müller-Wohlfeil, D.-I., & Becker, A. (1998). Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecological Modelling, 106, 261–289.

    Article  CAS  Google Scholar 

  32. Lathrop, R. C., Carpenter, S. R., Stow, C. A., Soranno, P. A., & Panuska, J. C. (1998). Phosphorus loading reductions needed to control blue-green algal blooms in Lake Mendota. Canadian Journal of Fisheries and Aquatic Sciences, 55, 1169–1178.

    Article  CAS  Google Scholar 

  33. Levine, D. A. (1992). A geographic information system approach to modeling nutrient and sediment transport. Ph.D. dissertation, Indiana University.

  34. Line, D. E., Jennings, G. D., McLaughlin, R. A., Osmond, D. L., Harman, W. A., Lombardo, L. A., Tweedy, K. L., et al. (1999). Nonpoint sources. Water Environment Research, 71, 1054–1069.

    Article  CAS  Google Scholar 

  35. Mackay, D. S., & Robinson, V. B. (2000). A multiple criteria decision support system for testing integrated environmental models. Fuzzy Set and Systems, 113, 53–67.

    Article  Google Scholar 

  36. McIsaac, G. F., David, M. B., Gertner, G. Z., & Goolsby, D. A. (2001). Eutrophication: Nitrate flux in the Mississippi River. Nature, 414, 166–167.

    Article  CAS  Google Scholar 

  37. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50, 885–900.

    Google Scholar 

  38. Mulla, D. J., & Addiscott, T. M. (1999). Validation approaches for field-, basin-, and regional-scale water quality models. In D. L. Corwin, K. Loague, & T. R. Ellsworth (Eds.), Assessment of non-point source pollution in the vadose zone (pp. 63–78). Geophysical Monograph 108. Washington: American Geophysical Union.

    Google Scholar 

  39. Osmond, D. L., Gannon, R. W., Gale, J. A., Line, D. E., Knott, C. B., Phillips, K. A., et al. (1997). WATERSHEDSS: A decision support system for watershed-scale nonpoint source water quality problems. Journal of the American Water Resources Association, 33, 327–341.

    Article  CAS  Google Scholar 

  40. Runkel, R. L., Crawford, C. G., & Cohn, T. A. (2004). Load Estimator (LOADEST): A FORTRAN program for estimating constituent loads in streams and rivers. U.S. Geological Survey Techniques and Methods (Book 4, Chapter A5). Reston: U.S. Geological Survey.

  41. Sharpley, A. N., Kleinman, P. J. A., McDowell, R. W., Gitau, M., & Bryant, R. B. (2002). Modeling phosphorus transport in agricultural watersheds: Processes and possibilities. Journal of Soil and Water Conservation, 57, 425–439.

    Google Scholar 

  42. Sivapalan, M. (2003). Prediction in ungauged basins: A grand challenge for theoretical hydrology. Hydrological Processes, 17, 3163–3170.

    Article  Google Scholar 

  43. USEPA (2001). PLOAD version 3.0: An ArcView GIS Tool to calculate nonpoint sources of pollution in watersheds and stormwater projects. EPA WDC0101-HSQ. Washington: U.S. Environmental Protection Agency.

    Google Scholar 

  44. USEPA (2009). National Water Quality Inventory: Report to Congress (2004 Reporting Cycle). EPA 841-R-08-001. Washington: U.S. Environmental Protection Agency.

    Google Scholar 

  45. Weller, D. E., Jordan, T. E., & Correll, D. L. (1998). Heuristic models for material discharge from landscapes with riparian buffers. Ecological Applications, 8, 1156–1169.

    Article  Google Scholar 

  46. World Resources Institute (1998). World Resources 1998–99: Environmental change and human health. New York: Oxford University Press.

    Google Scholar 

  47. Young, W. J., Prosser, I. P., & Hughes, A. O. (2001). Modelling nutrient loads in large-scale river networks for the National Land and Water Resources Audit. CSIRO Land and Water Technical Report, 12/01. Canberra: CSIRO Land and Water.

    Google Scholar 

Download references

Acknowledgements

Portions of this research were funded by the Graduate Scholarship at the Florida State University. Thanks to X. Yang, V. Mesev, J. Elsner, J. Stallins, and B. Hu for their valuable advice and contributions to the development of this model. The comments of M. Winsberg greatly improved the manuscript. The anonymous reviewers also provided me thoughtful and helpful reactions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, T. A Spatially Explicit Model for Estimating Annual Average Loads of Nonpoint Source Nutrient at the Watershed Scale. Environ Model Assess 15, 569–581 (2010). https://doi.org/10.1007/s10666-010-9225-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-010-9225-3

Keywords

Navigation