Skip to main content
Log in

Compressibility effects on outflows in a two-fluid system. 1. Line source in cylindrical geometry

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A two-dimensional line source outflow is considered, in which the evolution of a sharp interface separating an incompressible fluid from a bounding weakly compressible gas is analysed. Linear theory is applied, assuming that anisotropies in the source outflow are small, to develop an approximate solution for the interfacial evolution. The simplest solutions to the governing linearised equations require the presence of a high-order velocity singularity at the location of the line source. A spectral method is also developed to capture the nonlinear behaviour of the flow; after some finite time, curvature singularities are found to develop on the interface. Comparisons are made between the stability of the interface and its analogue which separates two incompressible fluids. It is found that when the bounding fluid is weakly compressible rather than incompressible, the stability of the interface is significantly increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rayleigh L (1883) Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc Lond Math Soc 14(1):170–177

    MATH  MathSciNet  Google Scholar 

  2. Taylor GI (1950) The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc R Soc Lond A 201(1065):192–196

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Zingale M, Woosley SE, Rendleman CA, Day MS, Bell JB (2005) Three-dimensional numerical simulations of Rayleigh–Taylor unstable flames in type Ia supernovae. Astrophys J 632(2):1021

    Article  ADS  Google Scholar 

  4. Amendt P, Colvin JD, Ramshaw JD, Robey HF, Landen OL (2003) Modified Bell–Plesset effect with compressibility: application to double-shell ignition target designs. Phys Plasmas 10(3):820–829

    Article  ADS  Google Scholar 

  5. Kuranz CC, Drake RP, Harding EC, Grosskopf MJ, Robey HF, Remington BA, Edwards MJ, Miles AR, Perry TS, Blue BE et al (2009) Two-dimensional blast-wave-driven Rayleigh–Taylor instability: experiment and simulation. Astrophys J 696(1):749

    Article  ADS  Google Scholar 

  6. Sharp DH (1984) An overview of Rayleigh–Taylor instability. Physica D 12(1–3):3–18

    Article  ADS  MATH  Google Scholar 

  7. Kull HJ (1991) Theory of the Rayleigh–Taylor instability. Phys Rep 206(5):197–325

    Article  ADS  Google Scholar 

  8. Bell GI (1951) Taylor instability on cylinders and spheres in the small amplitude approximation. Report LA-1321. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  9. Plesset MS (1954) On the stability of fluids flows with spherical symmetry. J Appl Phys 25(1):96–98

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Epstein R (2004) On the Bell–Plesset effects: the effects of uniform compression and geometrical convergence on the classical Rayleigh–Taylor instability. Phys Plasmas 11(11):5114–5124

    Article  ADS  Google Scholar 

  11. Yu H, Livescu D (2008) Rayleigh–Taylor instability in cylindrical geometry with compressible fluids. Phys Fluids 20(10):104103

    Article  ADS  MATH  Google Scholar 

  12. Gauthier S, Le Creurer B (2010) Compressibility effects in Rayleigh–Taylor instability-induced flows. Philos Trans R Soc A 368(1916):1681–1704

    Article  ADS  MATH  Google Scholar 

  13. Hong-Yu G, Xiao-Jin Y, Li-Feng W, Wen-Hua Y, Jun-Feng W, Ying-Jun L (2014) On the second harmonic generation through Bell–Plesset effects in cylindrical geometry. Chin Phys Lett 31(4):044702

    Article  ADS  Google Scholar 

  14. Liu W, Chen Y, Yu C, Li X (2015) Harmonic growth of spherical Rayleigh–Taylor instability in weakly nonlinear regime. Phys Plasmas 22(11):112112

    Article  ADS  Google Scholar 

  15. Matsuoka C, Nishihara K (2006) Analytical and numerical study on a vortex sheet in incompressible Richtmyer–Meshkov instability in cylindrical geometry. Phys Rev E 74(6):066303

    Article  ADS  MathSciNet  Google Scholar 

  16. Forbes LK, Chen MJ, Trenham CE (2007) Computing unstable periodic waves at the interface of two inviscid fluids in uniform vertical flow. J Comput Phys 221(1):269–287

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Mankbadi MR, Balachandar S (2012) Compressible inviscid instability of rapidly expanding spherical material interfaces. Phys Fluids 24(3):034106

    Article  ADS  Google Scholar 

  18. Terashima H, Tryggvason G (2009) A front-tracking/ghost-fluid method for fluid interfaces in compressible flows. J Comput Phys 228(11):4012–4037

    Article  ADS  MATH  Google Scholar 

  19. Forbes LK (2011a) A cylindrical Rayleigh–Taylor instability: radial outflow from pipes or stars. J Eng Math 70(1–3):205–224

    Article  MATH  MathSciNet  Google Scholar 

  20. Forbes LK (2011b) Rayleigh–Taylor instabilities in axi-symmetric outflow from a point source. ANZIAM J 53(2):87–121

    Article  MATH  MathSciNet  Google Scholar 

  21. Moore DW (1979) The spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc R Soc Lond A 365(1720):105–119

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Baker G, Caflisch RE, Siegel M (1993) Singularity formation during Rayleigh–Taylor instability. J Fluid Mech 252:51–78

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Stahler SW, Palla F (2008) The formation of stars. Wiley, New York

    Google Scholar 

  24. Chambers K, Forbes LK (2012) The cylindrical magnetic Rayleigh–Taylor instability for viscous fluids. Phys Plasmas 19(20):102111

    Article  ADS  Google Scholar 

  25. Blakely RJ (1996) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge

    Google Scholar 

  26. Anderson JD (2003) Modern compressible flow: with historical perspective. McGraw Hill, New York

    Google Scholar 

  27. Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  28. Cosgrove JM, Forbes LK (2017) Nonlinear behaviour of interacting mid-latitude atmospheric vortices. J Eng Math 104(1):41–62

    Article  MATH  MathSciNet  Google Scholar 

  29. Golub GH, Welsch JH (1969) Calculation of Gauss quadrature rules. Math Comput 23(106):221–230

    Article  MATH  MathSciNet  Google Scholar 

  30. Cranmer SR (2004) New views of the solar wind with the Lambert W function. Am J Phys 72(11):1397–1403

    Article  ADS  Google Scholar 

Download references

Acknowledgements

OAK wishes to acknowledge the financial support of the University of Tasmania’s Physics Department, SET Faculty, and Foundation. The authors are grateful to an anonymous referee for critical comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence K. Forbes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krzysik, O.A., Forbes, L.K. Compressibility effects on outflows in a two-fluid system. 1. Line source in cylindrical geometry. J Eng Math 107, 133–150 (2017). https://doi.org/10.1007/s10665-017-9922-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-017-9922-x

Keywords

Navigation