Skip to main content
Log in

The relation of steady evaporating drops fed by an influx and freely evaporating drops

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

We discuss a thin film evolution equation for a wetting evaporating liquid on a smooth solid substrate. The model is valid for slowly evaporating small sessile droplets when thermal effects are insignificant, while wettability and capillarity play a major role. The model is first employed to study steady evaporating drops that are fed locally through the substrate. An asymptotic analysis focuses on the precursor film and the transition region towards the bulk drop and a numerical continuation of steady drops determines their fully non-linear profiles. Following this, we study the time evolution of freely evaporating drops without influx for several initial drop shapes. As a result we find that drops initially spread if their initial contact angle is larger than the apparent contact angle of large steady evaporating drops with influx. Otherwise they recede right from the beginning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leizerson I, Lipson SG, Lyushnin AV (2003) When larger drops evaporate faster. Nature 422: 395–396

    Article  ADS  Google Scholar 

  2. Samid-Merzel N, Lipson SG, Tannhauser DS (1998) Pattern formation in drying water films. Phys Rev E 57: 2906–2913

    Article  ADS  Google Scholar 

  3. Deegan RD (2000) Pattern formation in drying drops. Phys Rev E 61: 475–485

    Article  ADS  Google Scholar 

  4. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389: 827–829

    Article  ADS  Google Scholar 

  5. Huang J, Kim F, Tao AR, Connor S, Yang P (2005) Spontaneous formation of nanoparticle stripe patterns through dewetting. Nat. Mater. 4: 896–900

    Article  ADS  Google Scholar 

  6. Thiele U, Mertig M, Pompe W (1998) Dewetting of an evaporating thin liquid film: heterogeneous nucleation and surface instability. Phys Rev Lett 80: 2869–2872

    Article  ADS  Google Scholar 

  7. Ajaev VS (2005) Spreading of thin volatile liquid droplets on uniformly heated surfaces. J Fluid Mech 528: 279–296

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Anderson DM, Davis SH (1995) The spreading of volatile liquid droplets on heated surfaces. Phys Fluids 7: 248–265

    Article  ADS  MATH  Google Scholar 

  9. Cachile M, Benichou O, Cazabat AM (2002) Evaporating droplets of completely wetting liquids. Langmuir 18: 7985–7990

    Article  Google Scholar 

  10. Pomeau Y (2002) Recent progress in the moving contact line problem: a review. C R Mec 330: 207–222

    Article  ADS  MATH  Google Scholar 

  11. Wayner PC (1993) Spreading of a liquid film with a finite contact angle by the evaporation/condensation process. Langmuir 9: 294–299

    Article  Google Scholar 

  12. Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E (2009) Wetting and spreading. Rev Mod Phys 81: 739–805

    Article  ADS  Google Scholar 

  13. Starov VM, Velarde MG, Radke CJ (2007) Wetting and spreading dynamics. Taylor and Francis, Boca Raton

    MATH  Google Scholar 

  14. Shahidzadeh-Bonn N, Rafaï S, Azouni A, Bonn D (2006) Evaporating droplets. J Fluid Mech 549: 307–313

    Article  ADS  Google Scholar 

  15. Hocking LM (1995) On contact angles in evaporating liquids. Phys. Fluids 7: 2950–2954

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Poulard C, Guena G, Cazabat A-M, Boudaoud A, Ben Amar M (2005) Rescaling the dynamics of evaporating drops. Langmuir 21: 8226

    Article  Google Scholar 

  17. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (2000) Contact line deposits in an evaporating drop. Phys Rev E 62: 756–765

    Article  ADS  Google Scholar 

  18. Dunn GJ, Wilson SK, Duffy BR, David S, Sefiane K (2009) The strong influence of substrate conductivity on droplet evaporation. J. Fluid Mech. 623: 329–351

    Article  ADS  MATH  Google Scholar 

  19. Sefiane K, Wilson SK, David S, Dunn GJ, Duffy BR (2009) On the effect of the atmosphere on the evaporation of sessile droplets of water. Phys Fluids 21: 062101

    Article  ADS  Google Scholar 

  20. Lyushnin AV, Golovin AA, Pismen LM (2002) Fingering instability of thin evaporating liquid films. Phys Rev E 65: 021602

    Article  MathSciNet  ADS  Google Scholar 

  21. Padmakar A, Kargupta K, Sharma A (1999) Instability and dewetting of evaporating thin water films on partially and completely wettable substrates. J Chem Phys 110: 1735–1744

    Article  ADS  Google Scholar 

  22. Pismen LM (2004) Spinodal dewetting in a volatile liquid film. Phys Rev E 70: 021601

    Article  ADS  Google Scholar 

  23. Rednikov AY, Colinet P (2010) Vapor-liquid steady meniscus at a superheated wall: asymptotics in an intermediate zone near the contact line. Microgravity Sci. Technol. 22: 249–255

    Article  Google Scholar 

  24. Ajaev VS, Gambaryan-Roisman T, Stephan P (2010) Static and dynamic contact angles of evaporating liquids on heated surfaces. J Colloid Interface Sci 342: 550–558

    Article  Google Scholar 

  25. Oron A, Davis SH, Bankoff SG (1997) Long-scale evolution of thin liquid films. Rev Mod Phys 69: 931–980

    Article  ADS  Google Scholar 

  26. Thiele U (2010) Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth. J Phys Condens Matter 22: 084019

    Article  ADS  Google Scholar 

  27. de Gennes P-G (1985) Wetting: statics and dynamics. Rev Mod Phys 57: 827–863

    Article  ADS  Google Scholar 

  28. Israelachvili JN (2010) Intermolecular and surface forces. Academic Press, London

    Google Scholar 

  29. Kalliadasis, S, Thiele, U (eds) (2007) Thin films of soft matter. Springer, Wien

    MATH  Google Scholar 

  30. Ruckenstein E, Jain RK (1974) Spontaneous rupture of thin liquid films. J Chem Soc Faraday Trans II 70: 132–147

    Article  Google Scholar 

  31. Sharma A (1993) Relationship of thin film stability and morphology to macroscopic parameters of wetting in the apolar and polar systems. Langmuir 9: 861–869

    Article  Google Scholar 

  32. Thiele U (2007) Structure formation in thin liquid films. In: Kalliadasis S, Thiele U (eds) Thin films of soft matter. Springer, Wien, pp 25–93

    Chapter  Google Scholar 

  33. Starov VM, Velarde MG (2009) Surface forces and wetting phenomena. J Phys Condes Matter 21: 464121

    Article  ADS  Google Scholar 

  34. Morris SJS (2001) Contact angles for evaporating liquids predicted and compared with existing experiments. J Fluid Mech 432: 1–30

    ADS  MATH  Google Scholar 

  35. Morris SJS (2003) The evaporating meniscus in a channel. J Fluid Mech 494: 297–317

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Doedel E, Keller HB, Kernevez JP (1991) Numerical analysis and control of bifurcation problems (I) bifurcation in finite dimensions. Int J Bifurc Chaos 1: 493–520

    Article  MathSciNet  MATH  Google Scholar 

  37. Doedel E, Keller HB, Kernevez JP (1991) Numerical analysis and control of bifurcation problems (II) bifurcation in infinite dimensions. Int J Bifurc Chaos 1: 745–772

    Article  MathSciNet  MATH  Google Scholar 

  38. Doedel EJ, Champneys AR, Fairgrieve TF, Kuznetsov YA, Sandstede B, Wang XJ (2000) AUTO97: continuation and bifurcation software for ordinary differential equations. Concordia University, Montreal

    Google Scholar 

  39. Thiele U, Neuffer K, Bestehorn M, Pomeau Y, Velarde MG (2002) Sliding drops on an inclined plane. Colloid Surf A 206: 87–104

    Article  Google Scholar 

  40. John K, Bär M, Thiele U (2005) Self-propelled running droplets on solid substrates driven by chemical reactions. Eur Phys J E 18: 183–199

    Article  Google Scholar 

  41. Thiele U, Knobloch E (2006) On the depinning of a driven drop on a heterogeneous substrate. New J Phys 8(313): 1–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desislava Todorova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Todorova, D., Thiele, U. & Pismen, L.M. The relation of steady evaporating drops fed by an influx and freely evaporating drops. J Eng Math 73, 17–30 (2012). https://doi.org/10.1007/s10665-011-9485-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-011-9485-1

Keywords

Navigation