Skip to main content
Log in

Atmospheric gaseous mercury and associated health risk assessment in the economic capital of India

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Mercury cycling in coastal metropolitan areas on the west coast of India becomes complex due to the combined effects of both intensive domestic anthropogenic emissions and marine air masses. The present study is based on yearlong data of continuous measurements of gaseous elemental mercury (GEM) concentration concurrent with meteorological parameters and some air pollutants at a coastal urban site in Mumbai, on the west coast of India, for the first time. The concentration of GEM was found in a range between 2.2 and 12.3 ng/m3, with a mean of 3.1 ± 1.1 ng/m3, which was significantly higher than the continental background values in the Northern Hemisphere (~ 1.5 ng/m3). Unlike particulates, GEM starts increasing post-winter to peak during the monsoon and decrease towards winter. July had the highest concentration of GEM followed by October, and a minimum in January. GEM exhibited a distinct diurnal cycle, mainly with a broad peak in the early morning, a narrow one by nightfall, and a minimum in the afternoon. The peaks and their timing suggest the origin of urban mobility and the start of local activities. A positive correlation between SO2, PM2.5, temperature, relative humidity, and GEM indicates that emissions from local industrial plants in the Mumbai coastal area. Principal component analysis (PCA) and cluster analysis (CA) confirm this fact. Monthly back trajectory analysis showed that air mass flows are predominantly from the Arabian Sea and local human activities. Assessment of human health risks by USEPA model reveals that the hazardous quotient, HQ < 1, implies negligible carcinogenic risk. GEM observations in Mumbai during the study period are below the World Health Organization’s (WHO) safe limit (200 ng/m3) for long-term inhalation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Bhave, P., Sadhwani, K., & Dhadwad, M. (2022). Total mercury in soil and leachate from municipal solid waste dumping grounds in Mumbai, India. Environmental Earth Sciences, 81(1), 30.

    Article  CAS  Google Scholar 

  • Choi, H. D., Holsen, T. M., & Hopke, P. K. (2008). Atmospheric mercury (Hg) in the Adirondacks: Concentrations and sources. Environmental Science & Technology, 42(15), 5644–5653.

    Article  CAS  Google Scholar 

  • Diao, C., Li, J., Zhang, B., & Tang, S. (2017). Characteristics of total gaseous mercury concentrations at a coastal area of the Yangtze Delta, China. Journal of the Air & Waste Management Association, 67(3):341–351.

  • Fu, X. W., Feng, X., Dong, Z. Q., Yin, R. S., Wang, J. X., Yang, Z. R., & Zhang, H. (2010). Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China. Atmospheric Chemistry and Physics, 10(5), 2425–2437.

    Article  CAS  Google Scholar 

  • Fu, X., Marusczak, N., Heimbürger, L. E., Sauvage, B., Gheusi, F., Prestbo, E. M., & Sonke, J. E. (2016). Atmospheric mercury speciation dynamics at the high-altitude Pic du Midi Observatory, southern France. Atmospheric Chemistry and Physics, 16(9), 5623–5639.

  • Fu, X., Liu, C., Zhang, H., Xu, Y., Zhang, H., Li, J., & Feng, X. (2021). Isotopic compositions of atmospheric total gaseous mercury in 10 Chinese cities and implications for land surface emissions. Atmospheric Chemistry and Physics, 21(9), 6721–6734.

    Article  CAS  Google Scholar 

  • Gardfeldta, K., Sommara, J., Ferrarab, R., Ceccarinib, C., Lanzillottab, E., Munthec, J., Angbergc, I. W., Lindqvista, O., Pirroned, N., Sprovierid, F., Pesentid, E., & Omberg, D. S. (2003). Evasion of mercuryfrom coastal and open waters of the Atlantic Ocean and the Mediterranean Sea. Atmospheric Environment, 37, S73–S84.

    Article  Google Scholar 

  • Gibb, H., & O’Leary, K. G. (2014). Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: A comprehensive review. Environmental Health Perspectives, 122(7), 667–672.

    Article  CAS  Google Scholar 

  • Gustin, M. S., Biester, H., & Kim, C. S. (2002). Investigation of the light-enhanced emission of mercury from naturally enriched substrates. Atmospheric Environment, 36(20), 3241–3254.

    Article  CAS  Google Scholar 

  • Jen, Y. H., Chen, W. H., Hung, C. H., Yuan, C. S., & Ie, I. R. (2014). Field measurement of total gaseous mercury and its correlation with meteorological parameters and criteria air pollutants at a coastal site of the Penghu Islands. Aerosol and Air Quality Research, 14(1), 364–375.

    Article  CAS  Google Scholar 

  • Jensen, A., & Iverfeldt, A. (1994). Atmospheric bulk deposition of mercury to the southern Baltic sea area. In Mercury pollution intergration and synthesis (pp. 221–229).

  • Jonassen, M. O., Ólafsson, H., Reuder, J., & Olseth, J. (2012). Multi-scale variability of winds in the complex topography of southwestern Norway. Tellus a: Dynamic Meteorology and Oceanography, 64(1), 11962.

    Article  Google Scholar 

  • Kim, J. H., Park, J. M., Lee, S. B., Pudasainee, D., & Seo, Y. C. (2010). Anthropogenic mercury emission inventory with emission factors and total emission in Korea. Atmospheric Environment, 44(23), 2714–2721.

    Article  CAS  Google Scholar 

  • Kim, K. H., Kabir, E., & Jahan, S. A. (2016). A review on the distribution of Hg in the environment and its human health impacts. Journal of Hazardous Materials, 306, 376–385.

    Article  CAS  Google Scholar 

  • Kock, H. H., Bieber, E., Ebinghaus, R., Spain, T. G., & Thees, B. (2005). Comparison of long-term trends and seasonal variations of atmospheric mercury concentrations at the two European coastal monitoring stations Mace Head, Ireland, and Zingst, Germany. Atmospheric Environment, 39(39), 7549–7556.

  • Korhale, N., Anand, V., Latha, R., & Murthy, B. S. (2023). Multi-year observations of particulate matter and gases over Mumbai: Spatio-temporal variation, oxidation ratios, and secondary aerosols. Atmospheric Pollution Research, 14(12), 101917.

    Article  CAS  Google Scholar 

  • Kotnik J, Žagar D, Novak G, Ličer M, Horvat M. Dissolved gaseous mercury (DGM) in the Gulf of Trieste, northern Adriatic Sea. Journal of Marine Science and Engineering, 10(5):587. https://doi.org/10.3390/jmse10050587

  • Lan, M., Zhang, J., Chui, Y. S., Wang, P., Chen, X., Lee, C. S., & Zhang, W. (2014). Carbon nanoparticle-based ratiometric fluorescent sensor for detecting mercury ions in aqueous media and living cells. ACS Applied Materials & Interfaces, 6(23), 21270–21278.

    Article  CAS  Google Scholar 

  • Lee, G. S., Kim, P. R., Han, Y. J., Holsen, T. M., Seo, Y. S., & Yi, S. M. (2016). Atmospheric speciated mercury concentrations on an island between China and Korea: sources and transport pathways. Atmospheric Chemistry and Physics, 16(6), 4119–4133.

  • Lee, S. H., Lee, J. I., Kim, P. R., Kim, D. Y., Jeon, J. W., & Han, Y. J. (2019). Factors influencing concentrations of atmospheric speciated mercury measured at the farthest island West of South Korea. Atmospheric Environment, 213, 239–249.

    Article  CAS  Google Scholar 

  • Lin, C. J., & Pehkonen, S. O. (1999). The chemistry of atmospheric mercury: A review. Atmospheric Environment, 33(13), 2067–2079.

    Article  CAS  Google Scholar 

  • Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., ... & Seigneur, C. (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. AMBIO: a Journal of the Human Environment, 36(1), 19–33.

  • Lindberg, S. A., & Stratton, W. J. (1998). Atmospheric mercury speciation: Concentrations and behavior of reactive gaseous mercury in ambient air. Environmental Science & Technology, 32(1), 49–57.

    Article  CAS  Google Scholar 

  • Liu, B., Keeler, G. J., Dvonch, J. T., Barres, J. A., Lynam, M. M., Marsik, F. J., & Morgan, J. T. (2010). Urban–rural differences in atmospheric mercury speciation. Atmospheric Environment, 44(16), 2013–2023.

    Article  CAS  Google Scholar 

  • Liu, M., Zhang, Q., Yu, C., Yuan, L., He, Y., Xiao, W., & Wang, X. (2021). Observation-based mercury export from rivers to coastal oceans in East Asia. Environmental Science & Technology, 55(20), 14269–14280.

    Article  CAS  Google Scholar 

  • Mao, H., Talbot, R. W., Sigler, J. M., Sive, B. C., & Hegarty, J. D. (2008). Seasonal and diurnal variations of Hg° over New England. Atmospheric Chemistry and Physics, 8(5), 1403–1421.

    Article  CAS  Google Scholar 

  • Mason, R. P., & Sheu, G. R. (2002). Role of the ocean in the global mercury cycle. Global Biogeochemical Cycles, 16(4), 40–41.

    Article  Google Scholar 

  • Miller, C. L., Watson, D. B., Lester, B. P., Lowe, K. A., Pierce, E. M., & Liang, L. (2013). Characterization of soils from an industrial complex contaminated with elemental mercury. Environmental Research, 125, 20–29.

    Article  CAS  Google Scholar 

  • Mittal, H., Sharma, A., & Gairola, A. (2018). A review on the study of urban wind at the pedestrian level around buildings. Journal of Building Engineering, 18, 154–163.

    Article  Google Scholar 

  • Nguyen, L. S. P., Pham, T. D. H., Truong, M. T., & Tran, A. N. (2023). Characteristics of total gaseous mercury at a tropical megacity in Vietnam and influence of tropical cyclones. Atmospheric Pollution Research, 14(8), 101813.

    Article  CAS  Google Scholar 

  • Nie, X., Mao, H., Li, P., Li, T., Zhou, J., Wu, Y., & Wang, Y. (2020a). Total gaseous mercury in a coastal city (Qingdao, China): Influence of sea-land breeze and regional transport. Atmospheric Environment, 235, 117633.

  • Nie, X., Wang, Y., Mao, H., Wang, T., Li, T., Wu, Y., ... & He, H. (2020b). Atmospheric mercury in an eastern Chinese metropolis (Jinan). Ecotoxicology and Environmental Safety, 196, 110541.

  • Osawa, T., Ueno, T., & Fu, F. (2007). Sequential variation of atmospheric mercury in Tokai‐mura, seaside area of eastern central Japan. Journal of Geophysical Research: Atmospheres, 112(D19).

  • Osterwalder, S., Huang, J. H., Shetaya, W. H., Agnan, Y., Frossard, A., Frey, B., Alewell, C., Kretzschmar, F., Biester, H., & Obrist, D. (2019). Mercury emission from industrially contaminated soils in relation to chemical, microbial, and meteorological factors. Environmental Pollution, 250(2019), 944-e952.

    Article  CAS  Google Scholar 

  • Ram, A., Rokade, M. A., Zingde, M. D., & Borole, D. V. (2009). Post-depositional memory record of mercury in sediment near the effluent disposal site of a chlor-alkali plant in Thane Creek-Mumbai Harbour, India. Environmental Technology, 30(8), 765–783.

    Article  CAS  Google Scholar 

  • Rao, M. N., Ram, A., Pradhan, U. K., & Siddaiah, V. (2019). Factors controlling organic matter composition and trophic state in seven tropical estuaries along the west coast of India. Environmental Geochemistry and Health, 41, 545–562.

    Article  Google Scholar 

  • Rao, M. N., Gaikwad, S., Ram, A., Pradhan, U. K., Sautya, S., Kumbhar, L., & Siddaiha, V. (2023). Effects of sedimentary heavy metals on meiobenthic community in tropical estuaries along eastern Arabian Sea. Environmental Geochemistry and Health, 45(3), 731–750.

    Article  CAS  Google Scholar 

  • Rolph, G., Stein, A., & Stunder, B. (2017). Real-time environmental applications and display system: READY. Environmental Modelling & Software, 95, 210–228. https://doi.org/10.1016/j.envsoft.2017.06.025

    Article  Google Scholar 

  • Rutter, A. P., Snyder, D. C., Stone, E. A., Schauer, J. J., Gonzalez-Abraham, R., Molina, L. T., & De Foy, B. (2009). In situ measurements of speciated atmospheric mercury and the identification of source regions in the Mexico City Metropolitan Area. Atmospheric Chemistry and Physics, 9(1), 207–220.

  • Schiavo, B., Morton-Bermea, O., Salgado-Martinez, E., & Hernández-Álvarez, E. (2020). Evaluation of possible impact on human health of atmospheric mercury emanations from the Popocatépetl volcano. Environmental Geochemistry and Health, 42, 3717–3729.

    Article  CAS  Google Scholar 

  • Schiavo, B., Morton-Bermea, O., Salgado-Martínez, E., García-Martínez, R., & Hernández-Álvarez, E. (2022). Health risk assessment of gaseous elemental mercury (GEM) in Mexico City. Environmental Monitoring and Assessment, 194(7), 456.

    Article  CAS  Google Scholar 

  • Schiavo, B., Meza-Figueroa, D., Morton-Bermea, O., Vizuete-Jaramillo, E., & Robles-Morua, A. (2023). Seasonal variation of mercury in settled dust from brick kiln pollution in Sonora, Mexico: Ecological risk and human health implication. Atmospheric Pollution Research, 14(7), 101787.

    Article  CAS  Google Scholar 

  • Sharma, B. M., Bharat, G. K., Šebková, K., & Scheringer, M. (2019). Implementation of the Minamata Convention to manage mercury pollution in India: Challenges and opportunities. Environmental Sciences Europe, 31, 1–12.

    Article  Google Scholar 

  • Shi, J., Chen, Y., Xu, L., Hong, Y., Li, M., Fan, X., ... & Chen, J. (2022). Measurement report: Atmospheric mercury in a coastal city of Southeast China–inter-annual variations and influencing factors. Atmospheric Chemistry and Physics, 22(17), 11187–11202.

  • Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M. D., & Ngan, F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1

  • Ullrich, S. M., Tanton, T. W., & Abdrashitova, S. A. (2001). Mercury in the aquatic environment: A review of factors affecting methylation. Critical Reviews in Environmental Science and Technology, 31(3), 241–293.

    Article  CAS  Google Scholar 

  • UNEP. (2017). Minamata convention on mercury – Text and annexes, p. 71.

  • USDOE. (2011). The risk assessment information system (RAIS). Cass Avenue Argonne, Department of Energy Oak Ridge Operations Office (ORO).

  • USEPA. (1989). Risk assessment guidance for superfund, Vol. I, Human Health Evaluation Manual (Part A), EPA/540/1– 89/002. Office of Emergency and Remedial Response.

  • USEPA. (2001). Methods for collection, storage and manipulation of sediments for chemical and toxicological analyses. Technical Manual, EPA-823-B-01–002, Office of Water.

  • USEPA. (2009). Risk assessment guidance for superfund volume I: Human health evaluation manual (Part F, Supplemental Guidance for Inhalation Risk Assessment (EPA-540-R-070–002). Office of Superfund Remediation and echnology Innovation.

  • USEPA. (2020). Regional screening levels (RSLs) - resident ambient air table (TR¼1E-06, HQ¼1). Center for public health and environmental assessment, Washington, DC.

  • Valente, R. J., Shea, C., Humes, K. L., & Tanner, R. L. (2007). Atmospheric mercury in the Great Smoky Mountains compared to regional and global levels. Atmospheric Environment, 41(9), 1861–1873.

    Article  CAS  Google Scholar 

  • Wang, Q., Gao, H. W., & Lin, S. (2006). A simulation study of diurnal variation of ozone and NOx in marine atmospheric boundary layer. Research of Environmental Sciences, 19, 9–14.

    CAS  Google Scholar 

  • Wang, J., Xie, Z., Wang, F., & Kang, H. (2017). Gaseous elemental mercury in the marine boundary layer and airsea flux in the Southern Ocean in austral summer. Science of The Total Environment, 603, 510–518.

  • Wang, Y., McElroy, M. B., Martin, R. V., Streets, D. G., Zhang, Q., & Fu, T. M. (2007). Seasonal variability of NOx emissions over east China constrained by satellite observations: Implications for combustion and microbial sources. Journal of Geophysical Research: Atmospheres, 112(D6).

  • Wängberg, I., Munthe, J., Pirrone, N., Iverfeldt, Å., Bahlman, E., Costa, P., ... & Tuncel, G. (2001). Atmospheric mercury distribution in Northern Europe and in the Mediterranean region. Atmospheric Environment, 35(17), 3019–3025.

  • Wängberg, I., Munthe, J., Amouroux, D., Andersson, M. E., Fajon, V., Ferrara, R., ... & Sprovieri, F. (2008). Atmospheric mercury at Mediterranean coastal stations. Environmental Fluid Mechanics, 8, 101–116.

  • Warneck, P. (1988) Chemistry of the natural atmosphere, Academic, San Diego, CA, USA, p 340.

  • WHO. (2000). Air quality guideline for Europe. 2nd ed..World Health Organization. Regional Office for Europe.

  • WHO. (2003). Environmental mercury and inorganic mercury compounds: Human health aspects. Geneva World Health Organization (IPCS), 61 p. 30 cm

  • Won, J. H., Park, J. Y., & Lee, T. G. (2007). Mercury emissions from automobiles using gasoline, diesel, and LPG. Atmospheric Environment, 41(35), 7547–7552.

    Article  CAS  Google Scholar 

  • Xu, L., Chen, J., Yang, L., Niu, Z., Tong, L., Yin, L., & Chen, Y. (2015). Characteristics and sources of atmospheric mercury speciation in a coastal city, Xiamen, China. Chemosphere, 119, 530–539.

    Article  CAS  Google Scholar 

  • Yi, H., Tong, L., Lin, J. M., Cai, Q. L., Wang, K. Q., Dai, X. R., ... & Xiao, H. (2020). Temporal variation and long–range transport of gaseous elemental mercury (GEM) over a coastal site of East China. Atmospheric Research, 233, 104699.

  • Yue, F., Qiu, Y., Zhan, H., Kang, H., Li, J., Liu, C., & Xie, Z. (2021). Characteristics of gaseous elemental mercury and its corresponding source contributions to regional transport in Hefei. China. Atmospheric Pollution Research, 12(8), 101146.

    Article  CAS  Google Scholar 

  • Zhang, H., Feng, X., Larssen, T., Qiu, G., Vogt, R. D. (2010). In Inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environmental Health Perspectives, 118(9):1183–1188.

  • Zhang, L., Wang, S., Wang, L., Wu, Y., Duan, L., Wu, Q., & Liu, X. (2015). Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China. Environmental Science & Technology, 49(5), 3185–3194.

    Article  CAS  Google Scholar 

  • Zhang, H., Fu, X., Lin, C. J., Shang, L., Zhang, Y., Feng, X., & Lin, C. (2016). Monsoon-facilitated characteristics and transport of atmospheric mercury at a high-altitude background site in southwestern China. Atmospheric Chemistry and Physics, 16(20), 13131–13148.

    Article  CAS  Google Scholar 

  • Zhu, J., Wang, T., Talbot, R., Mao, H., Hall, C. B., Yang, X., & Huang, X. (2012). Characteristics of atmospheric total gaseous mercury (TGM) observed in urban Nanjing, China. Atmospheric Chemistry and Physics, 12(24), 12103–12118.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Indian Institute of Tropical Meteorology (IITM), Pune and Ministry of Earth Science (MoES), Government of India, for funding SAFAR project and for the infra support. We also thank Dr. Gufran Beig for his involvement in establishing SAFAR network. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (https://www.ready.noaa.gov) used in this publication. Mr. Rutvik is acknowledged for his contribution in revising the first figure, painstakingly searching and finding details of industries.

Author information

Authors and Affiliations

Authors

Contributions

M Nageswar Rao: the major analysis, paper design, partial artwork, and original draft and review; Latha R: study conceptualization, supervision, review and edits; Korhale N: support data and analysis, artwork; Murthy B S contributed to overall supervision, primary review.

Corresponding author

Correspondence to R. Latha.

Ethics declarations

Ethics approval and consent to participate

All authors have read, understood, and complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, M.N., Latha, R., Nikhil, K. et al. Atmospheric gaseous mercury and associated health risk assessment in the economic capital of India. Environ Monit Assess 196, 519 (2024). https://doi.org/10.1007/s10661-024-12679-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12679-y

Keywords

Navigation