Skip to main content
Log in

Development of a macroinvertebrate-based biotic index to assess water quality of rivers in Niger State, North Central Ecoregion of Nigeria

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The increasing pollution of lotic ecosystems in sub-Saharan Africa, particularly in Nigeria, poses a threat to water quality, public health and biodiversity. It is therefore essential to develop appropriate tools and methods for monitoring these rivers, particularly in heavily affected areas, where these water resources are vital to the surrounding communities that are heavily dependent on them. To fill this gap, we propose to develop a multimetric index based on macroinvertebrates for the assessment of ecological quality of rivers in Niger State (NSRBI). Eighty-eight metrics were evaluated through a step-by-step statistical process (namely, range test and stability, redundancy test and relationship with abiotic variables), in which metrics that did not meet the conditions were excluded. At the end of this process, only four metrics (%Hemiptera, Diptera richness, Pielou equitability and % of very large individuals (size > 40 mm)) fulfilling all criteria were included in the index. These metrics were then scored on a continuous scale and divided into four water quality classes: “very poor”, “poor”, “fair” and “good”. Evaluation of the performance of the index on test sites showed a correspondence of 90% between index result and environmental-based classification. Therefore, the NSRBI could be a valuable tool for monitoring and assessing the ecological conditions of rivers in Niger State and the North Central Nigeria ecoregion predominantly in urban and agricultural landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data is available from the authors upon reasonable request.

References

  • Agbelade, A. D., Onyekwelu, J. C., & Oyun, M. B. (2016). Tree species diversity and their benefits in urban and peri-urban areas of Abuja and Minna, Nigeria. Applied Tropical Agriculture, 21(3), 27–36.

    Google Scholar 

  • Agboola, O. A., Downs, C. T., & O’Brien, G. (2020). A multivariate approach to the selection and validation of reference conditions in KwaZulu-Natal Rivers, South Africa. Frontiers in Environmental Science, 8, 584923. https://doi.org/10.3389/fenvs.2020.584923

    Article  Google Scholar 

  • Alemneh, T., Ambelu, A., Zaitchik, B. F., Bahrndorff, S., Mereta, S. T., & Pertoldi, C. (2019). A macroinvertebrate multimetric index for Ethiopian highland streams. Hydrobiologia, 843, 125–141. https://doi.org/10.1007/s10750-019-04042-x

    Article  CAS  Google Scholar 

  • Al-Shami, S. A., Rawi, C. S. M., Ahmad, A. H., Hamid, S. A., & Nor, S. A. M. (2011). Influence of agricultural, industrial, and anthropogenic stresses on the distribution and diversity of macroinvertebrates in Juru River Basin, Penang, Malaysia. Ecotoxicology and Environmental Safety, 74(5), 1195–1202. https://doi.org/10.1016/j.ecoenv.2011.02.022

    Article  PubMed  CAS  Google Scholar 

  • American Public Health Association (APHA). (2012). Standard Methods for the Examination of Water and Wastewater (Vol. 20, p. 2671).

    Google Scholar 

  • Angradi, T. R., Pearson, M. S., Jicha, T. M., Taylor, D. L., Bolgrien, D. W., Moffett, M. F., et al. (2009). Using stressor gradients to determine reference expectations for great river fish assemblages. Ecological Indicators, 9(4), 748–764. https://doi.org/10.1016/j.ecolind.2008.09.007

    Article  Google Scholar 

  • Arimoro, F. O., Auta, Y. I., Odume, O. N., Keke, U. N., & Mohammed, A. Z. (2018). Mouthpart deformities in Chironomidae (Diptera) as bioindicators of heavy metals pollution in Shiroro Lake, Niger State, Nigeria. Ecotoxicology and Environmental Safety, 149, 96–100. https://doi.org/10.1016/j.ecoenv.2017.10.074

    Article  PubMed  CAS  Google Scholar 

  • Arimoro, F. O., & James, H. M. (2008). Preliminary pictorial guide to the macroinvertebrates of Delta State Rivers, Southern Nigeria. Albany Museum.

    Google Scholar 

  • Arimoro, F. O., & Keke, U. N. (2021). Stream biodiversity and monitoring in North Central, Nigeria: the use of macroinvertebrate indicator species as surrogates. Environmental Science and Pollution Research, 28, 31003–31012.

    Article  PubMed  Google Scholar 

  • Arimoro, F. O., & Muller, W. J. (2010). Mayfly (Insecta: Ephemeroptera) community structure as an indicator of the ecological status of a stream in the Niger Delta area of Nigeria. Environmental monitoring and assessment, 166, 581–594. https://doi.org/10.1007/s10661-009-1025-3

    Article  PubMed  CAS  Google Scholar 

  • Arimoro, F. O., Odume, O. N., Uhunoma, S. I., & Edegbene, A. O. (2015). Anthropogenic impact on water chemistry and benthic macroinvertebrate associated changes in a southern Nigeria stream. Environmental Monitoring and Assessment, 187, 1–14. https://doi.org/10.1007/s10661-014-4251-2

    Article  CAS  Google Scholar 

  • Assefa, W. W., Eneyew, B. G., & Wondie, A. (2023). Development of a multimetric index based on macroinvertebrates for wetland ecosystem health assessment in predominantly agricultural landscapes, Upper Blue Nile basin, northwestern Ethiopia. Frontiers in Environmental Science, 11, 136. https://doi.org/10.3389/fenvs.2023.1117190

    Article  Google Scholar 

  • Aura, C. M., Kimani, E., Musa, S., Kundu, R., & Njiru, J. M. (2017). Spatio-temporal macroinvertebrate multi-index of biotic integrity (MMiBI) for a coastal river basin: a case study of River Tana, Kenya. Ecohydrology & Hydrobiology, 17(2), 113–124. https://doi.org/10.1016/j.ecohyd.2016.10.001

    Article  Google Scholar 

  • Baptista, D. F., Buss, D. F., Egler, M., Giovanelli, A., Silveira, M. P., & Nessimian, J. L. (2007). A multimetric index based on benthic macroinvertebrates for evaluation of Atlantic Forest streams at Rio de Janeiro State, Brazil. Hydrobiologia, 575, 83–94. https://doi.org/10.1007/s10750-006-0286-x

    Article  Google Scholar 

  • Baptista, D. F., de Souza, R. S., Vieira, C. A., Mugnai, R., Souza, A. S., & Oliveira, R. B. S. D. (2011). Multimetric index for assessing ecological condition of running waters in the upper reaches of the Piabanha-Paquequer-Preto Basin, Rio de Janeiro, Brazil. Zoologia (Curitiba), 28, 619–628. https://doi.org/10.1590/S1984-46702011000500010

    Article  Google Scholar 

  • Barbour, M. T. (1999). Rapid bioassessment protocols for use in wadeable streams and rivers: periphyton, benthic macroinvertebrates and fish. US Environmental Protection Agency, Office of Water.

    Google Scholar 

  • Barbour, M. T., Gerritsen, J., Griffith, Frydenborg, R., McCarron, E., White, J. S., & Bastian, M. L. (1996). A framework for biological criteria for Florida streams using benthic macroinvertebrates. Journal of the North American Benthological Society, 15(2), 185–211.

    Article  Google Scholar 

  • Barlow, J., França, F., Gardner, T. A., Hicks, C. C., Lennox, G. D., Berenguer, E., et al. (2018). The future of hyperdiverse tropical ecosystems. Nature, 559(7715), 517–526. https://doi.org/10.1038/s41586-018-0301-1

    Article  PubMed  ADS  CAS  Google Scholar 

  • Beisel, J. N., Usseglio-Polatera, P., Bachmann, V., & Moreteau, J. C. (2003). A comparative analysis of evenness index sensitivity. International Review of Hydrobiology: A Journal Covering all Aspects of Limnology and Marine Biology, 88(1), 3–15. https://doi.org/10.1002/iroh.200390004

    Article  ADS  Google Scholar 

  • Beketov, M. (2004). Different sensitivity of mayflies (Insecta, Ephemeroptera) to ammonia, nitrite and nitrate: linkage between experimental and observational data. Hydrobiologia, 528(1-3), 209–216. https://doi.org/10.1007/s10750-004-2346-4

    Article  CAS  Google Scholar 

  • Beyene, A., Addis, T., Kifle, D., Legesse, W., Kloos, H., & Triest, L. (2009). Comparative study of diatoms and macroinvertebrates as indicators of severe water pollution: Case study of the Kebena and Akaki rivers in Addis Ababa, Ethiopia. Ecological Indicators, 9(2), 381–392. https://doi.org/10.1016/j.ecolind.2008.05.001

    Article  CAS  Google Scholar 

  • Blocksom, K. A. (2003). A performance comparison of metric scoring methods for a multimetric index for Mid-Atlantic Highlands streams. Environmental Management, 31, 0670–0682. https://doi.org/10.1007/s00267-002-2949-3

    Article  Google Scholar 

  • Bonada, N., Prat, N., Resh, V. H., & Statzner, B. (2006). Developments in aquatic insect biomonitoring: A comparative analysis of recent approaches. Annual Review of Entomology, 51, 495–523. https://doi.org/10.1146/annurev.ento.51.110104.151124

    Article  PubMed  CAS  Google Scholar 

  • Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32(6), 831–849. https://doi.org/10.1016/j.envint.2006.05.002

    Article  PubMed  CAS  Google Scholar 

  • Cao, Y., Hawkins, C. P., Olson, J., & Kosterman, M. A. (2007). Modeling natural environmental gradients improves the accuracy and precision of diatom-based indicators. Journal of the North American Benthological Society, 26(3), 566–585.

    Article  Google Scholar 

  • Carbonell, J. A., Gutiérrez-Cánovas, C., Bruno, D., Abellán, P., Velasco, J., & Millán, A. (2011). Ecological factors determining the distribution and assemblages of the aquatic Hemiptera (Gerromorpha & Nepomorpha) in the Segura River basin (Spain). Limnetica, 30(1), 0059–0070.

    Article  Google Scholar 

  • Carpenter, S. R., & Bennett, E. M. (2011). Reconsideration of the planetary boundary for phosphorus. Environmental Research Letters, 6(1), 014009.

    Article  ADS  Google Scholar 

  • Carter, J. L., Resh, V. H., & Hannaford, M. J. (2017). Macroinvertebrates as biotic indicators of environmental quality. In Methods in stream ecology (pp. 293–318). Academic Press. https://doi.org/10.1016/B978-0-12-813047-6.00016-4

    Chapter  Google Scholar 

  • Chen, K., Hughes, R. M., Xu, S., Zhang, J., Cai, D., & Wang, B. (2014). Evaluating performance of macroinvertebrate-based adjusted and unadjusted multimetric indices (MMI) using multi-season and multi-year samples. Ecological Indicators, 36, 142–151. https://doi.org/10.1016/j.ecolind.2013.07.006

    Article  Google Scholar 

  • Chevenet, F., Doleadec, S., & Chessel, D. (1994). A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology, 31(3), 295–309. https://doi.org/10.1111/j.1365-2427.1994.tb01742.x

    Article  Google Scholar 

  • Cummins, K. W. (2021). The use of macroinvertebrate functional feeding group analysis to evaluate, monitor and restore stream ecosystem condition. Reports on Global Health Research, 4, 129. https://doi.org/10.29011/2690-9480.100129

    Article  Google Scholar 

  • Dalu, T., Wasserman, R. J., Tonkin, J. D., Mwedzi, T., Magoro, M. L., & Weyl, O. L. (2017). Water or sediment? Partitioning the role of water column and sediment chemistry as drivers of macroinvertebrate communities in an austral South African stream. Science of the Total Environment, 607, 317–325. https://doi.org/10.1016/j.scitotenv.2017.06.267

    Article  PubMed  ADS  CAS  Google Scholar 

  • Davies, S. P., & Jackson, S. K. (2006). The biological condition gradient: A descriptive model for interpreting change in aquatic ecosystems. Ecological Applications, 16(4), 1251–1266. https://doi.org/10.1890/1051-0761(2006)016[1251:TBCGAD]2.0.CO;2

    Article  PubMed  Google Scholar 

  • de Castro, D. M. P., Dolédec, S., & Callisto, M. (2018). Land cover disturbance homogenizes aquatic insect functional structure in neotropical savanna streams. Ecological Indicators, 84, 573–582. https://doi.org/10.1016/j.ecolind.2017.09.030

    Article  Google Scholar 

  • de Moor, I. J., Day, J. A., & De Moor, F. C. (2003). Guides to the freshwater invertebrates of Southern Africa: Volume 7 Insecta I-Ephemeroptera, Odonata and Plecoptera. In Water Research Commision.

    Google Scholar 

  • Dickens, C., Cox, A., Johnston, R. M., Davison, S., Henderson, D., Meynell, P. J., & Shinde, V. R. (2018). Monitoring the health of the greater Mekong’s rivers.

    Google Scholar 

  • Dobson, M., Magana, A., Mathooko, J. M., & Ndegwa, F. K. (2002). Detritivores in Kenyan highland streams: More evidence for the paucity of shredders in the tropics? Freshwater Biology, 47(5), 909–919. https://doi.org/10.1046/j.1365-2427.2002.00818.x

    Article  Google Scholar 

  • Edegbene, A. O. (2022). Assessing the health of forested riverine systems in the Niger Delta area of Nigeria: a macroinvertebrate-based multimetric index approach. Environmental Science and Pollution Research, 29(10), 15068–15080. https://doi.org/10.1007/s11356-021-16748-4

    Article  PubMed  Google Scholar 

  • Edegbene, A. O., Elakhame, L. A., Arimoro, F. O., Osimen, E. C., & Odume, O. N. (2019). Development of macroinvertebrate multimetric index for ecological evaluation of a river in North Central Nigeria. Environmental Monitoring and Assessment, 191, 1–18. https://doi.org/10.1007/s10661-019-7438-8

    Article  Google Scholar 

  • Edegbene, A. O., Odume, O. N., Arimoro, F. O., & Keke, U. N. (2021). Identifying and classifying macroinvertebrate indicator signature traits and ecological preferences along urban pollution gradient in the Niger Delta. Environmental Pollution, 281, 117076. https://doi.org/10.1016/j.envpol.2021.117076

    Article  PubMed  CAS  Google Scholar 

  • Eriksen, T. E., Brittain, J. E., Søli, G., Jacobsen, D., Goethals, P., & Friberg, N. (2021). A global perspective on the application of riverine macroinvertebrates as biological indicators in Africa, South-Central America, Mexico and Southern Asia. Ecological Indicators, 126, 107609. https://doi.org/10.1016/j.ecolind.2021.107609

    Article  Google Scholar 

  • Ertaş, A., & Yorulmaz, B. (2022). Comparative performance of the indices used for bioassessment of water quality of Sangı Stream (West Anatolia, Turkey). Russian Journal of Ecology, 53(4), 318–327. https://doi.org/10.1134/S1067413622040026

    Article  Google Scholar 

  • Fierro, P., Arismendi, I., Hughes, R. M., Valdovinos, C., & Jara-Flores, A. (2018). A benthic macroinvertebrate multimetric index for Chilean Mediterranean streams. Ecological Indicators, 91, 13–23. https://doi.org/10.1016/j.ecolind.2018.03.074

    Article  Google Scholar 

  • Gil, M. A., Tripole, S., & Vallania, E. A. (2008). Feeding habits of Smicridea (Rhyacophylax) dythyra Flint, 1974 (Trichoptera: Hydropsychidae) larvae in the Los Molles stream (San Luis–Argentina). Acta Limnologica Brasiliensia, 20(1), 1–4.

    Google Scholar 

  • Gordon, N. D., McMahon, T. A., Finlayson, B. L., Gippel, C. J., & Nathan, R. J. (2004). Stream hydrology: An introduction for ecologists. John Wiley and Sons.

    Google Scholar 

  • Hammer, Ø., & Harper, D. A. (2001). Past: Paleontological statistics software package for educaton and data anlysis. Palaeontologia Electronica, 4(1), 1.

    Google Scholar 

  • Hering, D., Feld, C. K., Moog, O., & Ofenböck, T. (2006). Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems: Experiences from the European AQEM and STAR projects and related initiatives. The ecological status of European rivers: Evaluation and intercalibration of assessment methods, 311–324. https://doi.org/10.1007/978-1-4020-5493-8_22

  • Holt, E. A., & Miller, S. W. (2010). Bioindicators: Using organisms to measure environmental impacts. Nature Education Knowledge, 3(10), 8. https://doi.org/10.1038/nature18639

    Article  CAS  Google Scholar 

  • Huang, Q. I., Gao, J., Cai, Y., Yin, H., Gao, Y., Zhao, J., et al. (2015). Development and application of benthic macroinvertebrate-based multimetric indices for the assessment of streams and rivers in the Taihu Basin, China. Ecological Indicators, 48, 649–659. https://doi.org/10.1016/j.ecolind.2014.09.014

    Article  Google Scholar 

  • Hughes, R. M. (2019). Ecological integrity: Conceptual foundations and applications. Oxford University Press.

    Google Scholar 

  • Jeffries, M., & Mills, D. (1990). Freshwater ecology principles and applications (pp. 84–92). Belhaven Press.

    Google Scholar 

  • Jun, Y. C., Won, D. H., Lee, S. H., Kong, D. S., & Hwang, S. J. (2012). A multimetric benthic macroinvertebrate index for the assessment of stream biotic integrity in Korea. International Journal of Environmental Research and Public Health, 9(10), 3599–3628. https://doi.org/10.3390/ijerph9103599

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaboré, I., Moog, O., Ouéda, A., Sendzimir, J., Ouédraogo, R., Guenda, W., & Melcher, A. H. (2018). Developing reference criteria for the ecological status of West African rivers. Environmental Monitoring and Assessment, 190, 1–17. https://doi.org/10.1007/s10661-017-6360-1

    Article  Google Scholar 

  • Kaboré, I., Ouéda, A., Moog, O., Meulenbroek, P., Tampo, L., Bancé, V., & Melcher, A. H. (2022). A benthic invertebrates-based biotic index to assess the ecological status of West African Sahel Rivers, Burkina Faso. Journal of Environmental Management, 307, 114503. https://doi.org/10.1016/j.jenvman.2022.114503

    Article  PubMed  Google Scholar 

  • Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., & Brumby, S. P. (2021). Global land use/land cover with Sentinel 2 and deep learning. In In 2021 IEEE international geoscience and remote sensing symposium IGARSS (pp. 4704–4707). IEEE. https://doi.org/10.1109/IGARSS47720.2021.9553499

    Chapter  Google Scholar 

  • Kassambara, A., & Mundt, F. (2021). Factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra

  • Keke, U. N., Arimoro, F. O., Auta, Y. I., & Ayanwale, A. V. (2017). Temporal and spatial variability in macroinvertebrate community structure in relation to environmental variables in Gbako River, Niger State, Nigeria. Tropical Ecology, 58(2), 229–240.

    CAS  Google Scholar 

  • Keke, U. N., Arimoro, F. O., Ayanwale, A. V., & Aliyu, S. M. (2015). Physicochemical parameters and heavy metals content of surface water in downstream Kaduna River, Zungeru, Niger state, Nigeria. Applied Science Research Journal, 3(2), 46–57.

    Google Scholar 

  • Keke, U. N., Omoigberale, M. O., Ezenwa, I., Yusuf, A., Biose, E., Nweke, N., et al. (2021). Macroinvertebrate communities and physicochemical characteristics along an anthropogenic stress gradient in a southern Nigeria stream: Implications for ecological restoration. Environmental and Sustainability Indicators, 12, 100157. https://doi.org/10.1016/j.indic.2021.100157

    Article  Google Scholar 

  • Klemm, D. J., Blocksom, K. A., Thoeny, W. T., Fulk, F. A., Herlihy, A. T., Kaufmann, P. R., & Cormier, S. M. (2002). Methods development and use of macroinvertebrates as indicators of ecological conditions for streams in the Mid-Atlantic Highlands Region. Environmental Monitoring and Assessment, 78, 169–212. https://doi.org/10.1023/A:1016363718037

    Article  PubMed  Google Scholar 

  • Ko, N. T., Suter, P., Conallin, J., Rutten, M., & Bogaard, T. (2020). Aquatic macroinvertebrate community changes downstream of the hydropower generating dams in Myanmar-potential negative impacts from increased power generation. Frontiers in Water, 2, 573543. https://doi.org/10.3389/frwa.2020.573543

    Article  Google Scholar 

  • Krynak, E. M., & Yates, A. G. (2018). Benthic invertebrate taxonomic and trait associations with land use in an intensively managed watershed: Implications for indicator identification. Ecological Indicators, 93, 1050–1059. https://doi.org/10.1016/j.ecolind.2018.06.002

    Article  Google Scholar 

  • Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., & Hoopes, M. F. (2014). The metacommunity concept: a framework for multi-scale community ecology. Ecological Letters, 7, 601–613.

    Article  Google Scholar 

  • Malmqvist, B., & Rundle, S. (2002). Threats to the running water ecosystems of the world. Environmental Conservation, 29(2), 134–153. https://doi.org/10.1017/S0376892902000097

    Article  Google Scholar 

  • Mary, N. N. (1999). Caractérisations physico-chimique et biologique des cours d'eau de la Nouvelle-Calédonie. Proposition d'un indice biotique fondé sur l'étude des macroinvertébrés benthiques. Ph.D. Dissertation. Université Française du Pacifique. https://hal-unc.archives-ouvertes.fr/tel-03086900

  • Mereta, S. T., Boets, P., De Meester, L., & Goethals, P. L. (2013). Development of a multimetric index based on benthic macroinvertebrates for the assessment of natural wetlands in Southwest Ethiopia. Ecological Indicators, 29, 510–521. https://doi.org/10.1016/j.ecolind.2013.01.026

    Article  CAS  Google Scholar 

  • Metcalfe, J. L. (1989). Biological water quality assessment of running waters based on macroinvertebrate communities: History and present status in Europe. Environmental Pollution, 60(1-2), 101–139. https://doi.org/10.1016/0269-7491(89)90223-6

    Article  PubMed  CAS  Google Scholar 

  • Millán, A., Velasco, J., Gutiérrez-Cánovas, C., Arribas, P., Picazo, F., Sánchez-Fernández, D., & Abellán, P. (2011). Mediterranean saline streams in southeast Spain: What do we know? Journal of Arid Environments, 75(12), 1352–1359. https://doi.org/10.1016/j.jaridenv.2010.12.010

    Article  ADS  Google Scholar 

  • Morse, J. C., Yang, L., & Tian, L. (1994). Aquatic insects of China useful for monitoring water quality (pp. 1–570). Hohai University Press.

    Google Scholar 

  • Moya, N., Hughes, R. M., Domínguez, E., Gibon, F. M., Goitia, E., & Oberdorff, T. (2011). Macroinvertebrate-based multimetric predictive models for evaluating the human impact on biotic condition of Bolivian streams. Ecological Indicators, 11(3), 840–847. https://doi.org/10.1016/j.ecolind.2010.10.012

    Article  Google Scholar 

  • Moya, N., Tomanova, S., & Oberdorff, T. (2007). Initial development of a multimetric index based on aquatic macroinvertebrates to assess streams condition in the Upper Isiboro-Sécure Basin, Bolivian Amazon. Hydrobiologia, 589, 107–116. https://doi.org/10.1007/s10750-007-0725-3

    Article  Google Scholar 

  • Ndatimana, G., Nantege, D., & Arimoro, F. O. (2023). A review of the application of the macroinvertebrate-based multimetric indices (MMIs) for water quality monitoring in lakes. Environmental Science and Pollution Research, 1-18. https://doi.org/10.1007/s11356-023-27559-0

  • Nguyen, T. H. T., Everaert, G., Boets, P., Forio, M. A. E., Bennetsen, E., Volk, M., Hoang, T. H. T., & Goethals, P. L. (2018). Modelling tools to analyze and assess the ecological impact of hydropower dams. Water, 10(3), 259. https://doi.org/10.3390/w10030259

    Article  Google Scholar 

  • Odountan, O. H., Janssens de Bisthoven, L., Abou, Y., & Eggermont, H. (2019). Biomonitoring of lakes using macroinvertebrates: Recommended indices and metrics for use in West Africa and developing countries. Hydrobiologia, 826, 1–23. https://doi.org/10.1007/s10750-018-3745-2

    Article  Google Scholar 

  • Odume, O. N., Muller, W. J., Arimoro, F. O., & Palmer, C. G. (2012). The impact of water quality deterioration on macroinvertebrate communities in the Swartkops River, South Africa: a multimetric approach. African Journal of Aquatic Science, 37(2), 191–200. https://doi.org/10.2989/16085914.2012.670613

    Article  Google Scholar 

  • Odume, O. N., Ntloko, P., Akamagwuna, F. C., Dallas, H. M., & Barber-James, H. (2018). Development of macroinvertebrate trait-based approach for assessing and managing ecosystem health in South African Rivers–incoporating a case study in the Tsitsa River and its tributaries, Eastern Cape. Water Research Commission Project K5/7157.

  • Odume, O. N., Palmer, C. G., Arimoro, F. O., & Mensah, P. K. (2016). Chironomid assemblage structure and morphological response to pollution in an effluent-impacted river, Eastern Cape, South Africa. Ecological Indicators, 67, 391–402. https://doi.org/10.1016/j.ecolind.2016.03.001

    Article  Google Scholar 

  • Ofenböck, T., Moog, O., Gerritsen, J., & Barbour, M. (2004). A stressor specific multimetric approach for monitoring running waters in Austria using benthic macro-invertebrates. Integrated Assessment of Running Waters in Europe, 251-268. https://doi.org/10.1007/978-94-007-0993-5_15

  • Ofogh, A. R. E., Dorche, E. E., Birk, S., & Bruder, A. (2023). Effect of seasonal variability on the development and application of a novel Multimetric Index based on benthic macroinvertebrate communities–A case study from streams in the Karun river basin (Iran). Ecological Indicators, 146, 109843. https://doi.org/10.1016/j.ecolind.2022.109843

    Article  Google Scholar 

  • Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. (2020). vegan: community ecology package. R package version, 2, 5–7.

    Google Scholar 

  • Parienté, W. (2017). Urbanization in sub-Saharan Africa and the challenge of access to basic services. Journal of Demographic Economics, 83(1), 31–39. https://doi.org/10.1017/dem.2017.3

    Article  Google Scholar 

  • Peck, D. V., Herlihy, A. T., Hill, B. H., Hughes, R. M., Kaufmann, P. R., Klemm, D. J., ... & Cappaert, M. R. (2006). Environmental monitoring and assessment program—surface waters western pilot study: Field operations manual for wadeable streams. Environmental Protection Agency.

  • Príncipe, R. E., Gualdoni, C. M., Oberto, A. M., Raffaini, G. B., & Corigliano, M. C. (2010). Spatial-temporal patterns of functional feeding groups in mountain streams of Córdoba, Argentina. Ecología Austral, 20(03), 257–268.

    Google Scholar 

  • R Core Team (2021). R: A language and environment for statistical computing. . Retrieved from https://www.R-project.org/.

    Google Scholar 

  • Rodier, J., Legube, B., Merlet, N., Brunet, R., Mialocq, J. C., & Leroy, P. (2009). L’analyse de l’eau: Eaux naturelles, eaux résiduaires, eau de mer (9th ed., pp. 564–571). Dunod.

  • Rosenberg, D. M., & Resh, V. H. (1993). Freshwater biomonitoring and benthic macroinvertebrates (p. 488). Chapman and Hall.

    Google Scholar 

  • Roy, A. H., Rosemond, A. D., Paul, M. J., Leigh, D. S., & Wallace, J. B. (2003). Stream macroinvertebrate response to catchment urbanisation (Georgia, USA). Freshwater Biology, 48(2), 329–346. https://doi.org/10.1046/j.1365-2427.2003.00979.x

    Article  Google Scholar 

  • Saito, V. S., Siqueira, T., & Fonseca-Gessner, A. A. (2015). Should phylogenetic and functional diversity metrics compose macroinvertebrate multimetric indices for stream biomonitoring? Hydrobiologia, 745, 167–179. https://doi.org/10.1007/s10750-014-2102-3

    Article  Google Scholar 

  • Sayer, C. A., Máiz-Tomé, L., & Darwall, W. R. T. (Eds.). (2018). Freshwater biodiversity in the Lake Victoria Basin: Guidance for species conservation, site protection, climate resilience and sustainable livelihoods. International Union for Conservation of Nature.

    Google Scholar 

  • Serra, S. R., Graça, M. A., Dolédec, S., & Feio, M. J. (2017). Chironomidae traits and life history strategies as indicators of anthropogenic disturbance. Environmental Monitoring and Assessment, 189, 1–16. https://doi.org/10.1007/s10661-017-6027-y

    Article  Google Scholar 

  • Shiyun, C., Gong, Y., Wang, H., Zheng, J., Hu, J., Hu, J., & Dong, F. (2017). A pilot macroinvertebrate-based multimetric index (MMI-CS) for assessing the ecological status of the Chishui River basin, China. Ecological Indicators, 83, 84–95. https://doi.org/10.1016/j.ecolind.2017.07.045

    Article  Google Scholar 

  • Shull, D. R., Smith, Z. M., & Selckmann, G. M. (2019). Development of a benthic macroinvertebrate multimetric index for large semiwadeable rivers in the Mid-Atlantic region of the USA. Environmental Monitoring and Assessment, 191(1), 22. https://doi.org/10.1007/s10661-018-7153-x

    Article  Google Scholar 

  • Silva, D. R., Herlihy, A. T., Hughes, R. M., & Callisto, M. (2017). An improved macroinvertebrate multimetric index for the assessment of wadeable streams in the neotropical savanna. Ecological Indicators, 81, 514–525. https://doi.org/10.1016/j.ecolind.2017.06.017

    Article  Google Scholar 

  • Sitati, A., Masese, F. O., Yegon, M. J., Achieng, A. O., & Agembe, S. W. (2021). Abundance-and biomass-based metrics of functional composition of macroinvertebrates as surrogates of ecosystem attributes in Afrotropical streams. Aquatic Sciences, 83, 1–15. https://doi.org/10.1007/s00027-021-00829-0

    Article  CAS  Google Scholar 

  • Smith, L. E., & Siciliano, G. (2015). A comprehensive review of constraints to improved management of fertilizers in China and mitigation of diffuse water pollution from agriculture. Agriculture, Ecosystems & Environment, 209, 15–25. https://doi.org/10.1016/j.agee.2015.02.016

    Article  Google Scholar 

  • Sripanya, J., Rattanawilai, K., Vongsombath, C., Vannachak, V., Hanjavanit, C., & Sangpradub, N. (2022). Benthic Macroinvertebrates and Trichoptera Adults for Bioassessment Approach in Streams and Wadeable Rivers in Lao People's Democratic Republic. Tropical Natural History, 22(1), 12–24.

    Google Scholar 

  • Sripanya, J., Vongsombath, C., Vannachak, V., Rattanachan, K., Hanjavanit, C., Mahakham, W., & Sangpradub, N. (2023). Benthic macroinvertebrate communities in wadeable rivers and streams of Lao PDR as a useful tool for biomonitoring water quality: A multimetric index Approach. Water, 15(4), 625.

    Article  Google Scholar 

  • Stevenson, R. J., & Bahls, L. L. (2002). Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and fish. Periphyton protocols (2nd ed., p. 123). US EPA.

    Google Scholar 

  • Stoddard, J. L., Herlihy, A. T., Peck, D. V., Hughes, R. M., Whittier, T. R., & Tarquinio, E. (2008). A process for creating multimetric indices for large-scale aquatic surveys. Journal of the North American Benthological Society, 27(4), 878–891. https://doi.org/10.1899/08-053.1

    Article  Google Scholar 

  • Tachet, H., Richoux, P., Bournaud, M., & Usseglio-Polatera, P. (2010). Invertébrés d'eau douce: systématique, biologie, écologie (Vol. 15, pp. 89–10). CNRS éditions.

    Google Scholar 

  • Tafangenyasha, C., & Dzinomwa, T. (2005). Land-use impacts on river water quality in lowveld sand river systems in south-east Zimbabwe. Land Use and Water Resources Research, 5(1732-2016-140251). https://doi.org/10.22004/ag.econ.47961

  • Tampo, L., Lazar, I. M., Kaboré, I., Oueda, A., Akpataku, K. V., Djaneye-Boundjou, G., et al. (2020). A multimetric index for assessment of aquatic ecosystem health based on macroinvertebrates for the Zio river basin in Togo. Limnologica, 83, 125783. https://doi.org/10.1016/j.limno.2020.125783

    Article  CAS  Google Scholar 

  • Thorne, R., & Williams, P. (1997). The response of benthic macroinvertebrates to pollution in developing countries: A multimetric system of bioassessment. Freshwater Biology, 37(3), 671–687. https://doi.org/10.1046/j.1365-2427.1997.00181.x

    Article  Google Scholar 

  • Tomanova, S., Moya, N., & Oberdorff, T. (2008). Using macroinvertebrate biological traits for assessing biotic integrity of neotropical streams. River Research and Applications, 24(9), 1230–1239. https://doi.org/10.1002/rra.1148

    Article  Google Scholar 

  • Tomanova, S., & Usseglio-Polatera, P. (2007). Patterns of benthic community traits in neotropical streams: Relationship to mesoscale spatial variability. Fundamental and Applied Limnology-Archiv fur Hydrobiologie, 170(3), 243–256. https://doi.org/10.1127/1863-9135/2007/0170-0243

    Article  Google Scholar 

  • Tonkin, J. D., Arimoro, F. O., & Haase, P. (2016). Exploring stream communities in a tropical biodiversity hotspot: Biodiversity, regional occupancy, niche characteristics and environmental correlates. Biodiversity and Conservation, 25(5), 975–993. https://doi.org/10.1007/s10531-016-1101-2

    Article  Google Scholar 

  • United Nations Environment Programme. (2016). A snapshot of the world’s water quality: Towards a global assessment (p. 162). United Nations Environment Programme A Snapshot of the World’s Water Quality, 162.

    Google Scholar 

  • Vaissie, P., Monge, A., & Husson, F. (2021). Factoshiny: Perform factorial analysis from “FactoMineR” with a Shiny Application. R Package Version, 2, 4.

    Google Scholar 

  • Vander Laan, J. J., Hawkins, C. P., Olson, J. R., & Hill, R. A. (2013). Linking land use, in-stream stressors, and biological condition to infer causes of regional ecological impairment in streams. Freshwater Science, 32(3), 801–820.

    Article  Google Scholar 

  • Wan, R., Meng, F., Su, E., Fu, W., & Wang, Q. (2018). Development of a classification scheme for evaluating water quality in marine environment receiving treated municipal effluent by an integrated biomarker approach in Meretrix meretrix. Ecological Indicators, 93, 697–703. https://doi.org/10.1016/j.ecolind.2018.05.062

    Article  CAS  Google Scholar 

  • Weigel, B. M., & Dimick, J. J. (2011). Development, validation, and application of a macroinvertebrate-based Index of Biotic Integrity for nonwadeable rivers of Wisconsin. Journal of the North American Benthological Society, 30(3), 665–679. https://doi.org/10.1899/10-161.1

    Article  Google Scholar 

  • Yisa, J., & Tijani, J. O. (2010). Analytical studies on water quality index of river Landzu. American Journal of Applied Sciences, 7(4), 453–458.

    Article  CAS  Google Scholar 

  • Zhang, Y., Cheng, L., Kong, M., Li, W., Gong, Z., Zhang, L., et al. (2019). Utility of a macroinvertebrate-based multimetric index in subtropical shallow lakes. Ecological Indicators, 106, 105527. https://doi.org/10.1016/j.ecolind.2019.105527

    Article  Google Scholar 

  • Zhang, Y., Leung, J. Y., Zhang, Y., Cai, Y., Zhang, Z., & Li, K. (2021). Agricultural activities compromise ecosystem health and functioning of rivers: Insights from multivariate and multimetric analyses of macroinvertebrate assemblages. Environmental Pollution, 275, 116655. https://doi.org/10.1016/j.envpol.2021.116655

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank those who provided help during sample collection. The authors thank the editor and anonymous reviewers for their constructive comments that improved this study.

Funding

This work was supported by the African Water Resources Mobility Network (AWaRMN) Grants No. 2019 – 1973/ 004 - 001, which has received funding from the Intra-African Academic Mobility Scheme of the European Union for financial support and PhD scholarship to the first author.

Author information

Authors and Affiliations

Authors

Contributions

Attobla Fulbert Assie wrote the original manuscript, did field investigation and analysed data; Gilbert Ndatimana did field investigation; Unique Keke, Francis Oforum Arimoro, Adesola Victoria Ayanwale, Augustine Ovie Edegbene and Edia Oi Edia helped in conceptualization, resources and supervised the work; All authors reviewed the manuscript.

Corresponding author

Correspondence to Attobla Fulbert Assie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLSX 31.7 KB)

Appendix

Appendix

Table 7 Process of selection of metrics for redundancy test. Response to disturbance, Mann-Whitney test p value, (CV) coefficient of variation. IQR score, (DE) discrimination efficiency

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assie, A.F., Arimoro, F.O., Ndatimana, G. et al. Development of a macroinvertebrate-based biotic index to assess water quality of rivers in Niger State, North Central Ecoregion of Nigeria. Environ Monit Assess 196, 230 (2024). https://doi.org/10.1007/s10661-024-12368-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-024-12368-w

Keywords

Navigation