Skip to main content

Advertisement

Log in

Indexing and segment-level mapping of soil quality in a spatially complex watershed in northern Iran

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil quality (SQ) modeling and mapping is a leading research field aiming to provide reproducible and cost-effective yet accurate SQ predictions at the landscape level. This endeavor was conducted in a complex watershed in northern Iran. We classified the region into spectrally and topographically homogenous land units (average area of 48 ± 23 ha) using object-based segmentation analysis. Following the physicochemical analysis of soil samples from 98 stations, the Nemoro soil quality index (SQIn) was produced using the minimum dataset procedure and a non-linear sigmoid scoring function. SQIn values averaged 0.21 ± 0.06 and differed statistically between major land uses. To predict and map SQIn for each land unit, the best-performing regression model (F(3, 84) = 45.57, p = 0.00, R2 = 0.62) was built based on the positive contribution of the mean Landsat 8-OLI band 5, and negative influence of land surface temperature retrieved from Landsat 8-OLI band 10 and surface slope (t-test p-values < 0.01). Results showed that dense-canopy woodlands located in low-slope land units exhibit higher SQIn while regions characterized by either low-vegetation or steep-sloped land units had SQ deficits. This study provides insights into SQ prediction and mapping across spatially complex large-scale landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  • Abrams, M., Crippen, R., & Fujisada, H. (2020). ASTER global digital elevation model (GDEM) and ASTER global water body dataset (ASTWBD). Remote Sensing, 12(7), 1156.

    Article  Google Scholar 

  • Aneseyee, A. B., Elias, E., Soromessa, T., & Feyisa, G. L. (2020). Land use/land cover change effect on soil erosion and sediment delivery in the Winike watershed, Omo Gibe Basin. Ethiopia. Science of the Total Environment, 728, 138776.

    Article  CAS  Google Scholar 

  • Arciniegas-Ortega, S., Molina, I., & Garcia-Aranda, C. (2022). Soil order-land use index using field-satellite spectroradiometry in the Ecuadorian Andean Territory for modeling soil quality. Sustainability, 14(12), 7426.

    Article  Google Scholar 

  • Asgarian, A., Soffianian, A., Pourmanafi, S., & Bodaghabad, M. B. (2018). Evaluating the spatial effectiveness of alternative urban growth scenarios in protecting cropland resources: A case of mixed agricultural-urbanized landscape in central Iran. Sustainable Cities and Society, 43, 197–207.

    Article  Google Scholar 

  • Atkinson, A. C., Riani, M., & Corbellini A. (2021). The box–cox transformation: Review and extensions. 239–255.

  • Bastida, F., Moreno, J. L., Hernández, T., & García, C. (2006). Microbiological degradation index of soils in a semiarid climate. Soil Biology and Biochemistry, 38(12), 3463–3473.

    Article  CAS  Google Scholar 

  • Blake, G., & Hartge, K. (1986). Particle density. Methods of soil analysis Part 1 physical and mineralogical methods, 5, 377–382.

  • Bonfante, A., Terribile, F., & Bouma, J. (2019). Refining physical aspects of soil quality and soil health when exploring the effects of soil degradation and climate change on biomass production: An Italian case study. The Soil, 5(1), 1–14.

    Article  CAS  Google Scholar 

  • Bouycos, G. (1962). Hydrometer method improved for making particles size of soils. Agronomy Journal, 56, 464–465.

    Article  Google Scholar 

  • Bremner, J. M. (1996). Nitrogen‐total. Methods of soil analysis: Part 3 Chemical methods, 5, 1085–11.12

  • Burt, R. (2004). Soil survey laboratory methods manual: soil survey investigations. Version 4.0. ed. Natural Resources Conservation Service, Nebraska.

  • Cambardella, C., & Elliott, E. (1993). Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Science Society of America Journal, 57(4), 1071–1076.

    Article  CAS  Google Scholar 

  • Cárceles Rodríguez, B., Durán-Zuazo, V. H., Soriano Rodríguez, M., García-Tejero, I. F., Gálvez Ruiz, B., & Cuadros Tavira, S. (2022). Conservation agriculture as a sustainable system for soil health: A review. Soil Systems, 6(4), 87.

    Article  Google Scholar 

  • Chen, D., Chang, N., Xiao, J., Zhou, Q., & Wu, W. (2019). Mapping dynamics of soil organic matter in croplands with MODIS data and machine learning algorithms. Science of the Total Environment, 669, 844–855.

    Article  CAS  Google Scholar 

  • Conant, R. T., Six, J., & Paustian, K. (2003). Land use effects on soil carbon fractions in the southeastern United States. I. Management-intensive versus extensive grazing. Biology and Fertility of Soils, 38, 386–392.

    Article  CAS  Google Scholar 

  • da Silva Farias, P. G., da Silva Souza, C. B., Rosset, J. S., Ozório, J. M. B., Panachuki, E., Schiavo, J. A., et al. (2022). Physical fractions of organic matter and mineralizable soil carbon as quality indicators in areas under different forms of use in the Cerrado-Pantanal Ecotone. Environmental Monitoring and Assessment, 194(7), 517.

    Article  Google Scholar 

  • Dhawale, N. M., Adamchuk, V. I., Prasher, S. O., & Viscarra Rossel, R. A. (2021). Evaluating the precision and accuracy of proximal soil vis–NIR sensors for estimating soil organic matter and texture. Soil Systems, 5(3), 48.

    Article  CAS  Google Scholar 

  • Diaz-Gonzalez, F. A., Vuelvas, J., Correa, C. A., Vallejo, V. E., & Patino, D. (2022). Machine learning and remote sensing techniques applied to estimate soil indicators–review. Ecological Indicators, 135, 108517.

    Article  CAS  Google Scholar 

  • Forkuor, G., Hounkpatin, O. K., Welp, G., & Thiel, M. (2017). High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: A comparison of machine learning and multiple linear regression models. PLoS ONE, 12(1), e0170478.

    Article  Google Scholar 

  • Forouzannia, M., & Chamani, A. (2022). Mangrove habitat suitability modeling: Implications for multi-species plantation in an arid estuarine environment. Environmental Monitoring and Assessment, 194(8), 552.

    Article  CAS  Google Scholar 

  • Gomes, L. C., Faria, R. M., de Souza, E., Veloso, G. V., Schaefer, C. E. G., & Fernandes Filho, E. I. (2019). Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, 340, 337–350.

    Article  CAS  Google Scholar 

  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27.

    Article  Google Scholar 

  • Guest, B., Stockli, D. F., Grove, M., Axen, G. J., Lam, P. S., & Hassanzadeh, J. (2006). Thermal histories from the central Alborz Mountains, northern Iran: Implications for the spatial and temporal distribution of deformation in northern Iran. Geological Society of America Bulletin, 118(11–12), 1507–1521.

    Article  Google Scholar 

  • Huang, X., Senthilkumar, S., Kravchenko, A., Thelen, K., & Qi, J. (2007). Total carbon mapping in glacial till soils using near-infrared spectroscopy. Landsat Imagery and Topographical Information. Geoderma, 141(1–2), 34–42.

    CAS  Google Scholar 

  • Izadi, F., Chamani, A., & Zamani-Ahmadmahmoodi, R. (2022). How vegetation cover characteristics response to the spread of Prosopis juliflora: A time-series remote sensing analysis in southern Iran. Environmental Monitoring and Assessment, 194(6), 401.

    Article  Google Scholar 

  • Jiang, M., Xu, L., Chen, X., Zhu, H., & Fan, H. (2020). Soil quality assessment based on a minimum data set: A case study of a county in the typical river delta wetlands. Sustainability, 12(21), 9033.

    Article  CAS  Google Scholar 

  • Karimian, S., Chamani, A., & Shams, M. (2020). Evaluation of heavy metal pollution in the Zayandeh-Rud River as the only permanent river in the central plateau of Iran. Environmental Monitoring and Assessment, 192, 1–13.

    Article  Google Scholar 

  • Kemper, W., & Rosenau, R. (1986). Aggregate stability and size distribution. Methods of soil analysis: Part 1 physical and mineralogical methods, 5, 425–442.

  • Khanal, S., Fulton, J., Klopfenstein, A., Douridas, N., & Shearer, S. (2018). Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. Computers and Electronics in Agriculture, 153, 213–225.

    Article  Google Scholar 

  • Laamrani, A., Berg, A. A., Voroney, P., Feilhauer, H., Blackburn, L., March, M., et al. (2019). Ensemble identification of spectral bands related to soil organic carbon levels over an agricultural field in Southern Ontario Canada. Remote Sensing, 11(11), 1298.

    Article  Google Scholar 

  • Leul, Y., Assen, M., Damene, S., & Legass, A. (2023). Effects of land use types on soil quality dynamics in a tropical sub-humid ecosystem, western Ethiopia. Ecological Indicators, 147, 110024.

    Article  CAS  Google Scholar 

  • Levi, N., Karnieli, A., & Paz-Kagan, T. (2022). Airborne imaging spectroscopy for assessing land-use effect on soil quality in drylands. ISPRS Journal of Photogrammetry and Remote Sensing, 186, 34–54.

    Article  Google Scholar 

  • Liu, L.-A., Yang, R.-M., Zhang, X., Zhu, C.-M., & Zhang, Z.-Q. (2021). A mechanistic approach for modeling soil development using remotely sensed data collected from invaded coasts. Remote Sensing, 13(4), 564.

    Article  Google Scholar 

  • Magdić, I., Safner, T., Rubinić, V., Rutić, F., Husnjak, S., & Filipović, V. (2022). Effect of slope position on soil properties and soil moisture regime of Stagnosol in the vineyard. Journal of Hydrology and Hydromechanics, 70(1), 62–73.

    Article  Google Scholar 

  • Marrel, A., & Chabridon, V. (2021). Statistical developments for target and conditional sensitivity analysis: Application on safety studies for nuclear reactor. Reliability Engineering & System Safety, 214, 107711.

    Article  Google Scholar 

  • Martín-Sanz, J. P., de Santiago-Martín, A., Valverde-Asenjo, I., Quintana-Nieto, J. R., González-Huecas, C., & López-Lafuente, A. L. (2022). Comparison of soil quality indexes calculated by network and principal component analysis for carbonated soils under different uses. Ecological Indicators, 143, 109374.

    Article  Google Scholar 

  • Meles, M. B., Younger, S. E., Jackson, C. R., Du, E., & Drover, D. (2020). Wetness index based on landscape position and topography (WILT): Modifying TWI to reflect landscape position. Journal of Environmental Management, 255, 109863.

    Article  Google Scholar 

  • Miranda-Arámbula, M., Ríos-Cortés, A. M., Medina-Pérez, G., Fernández-Luqueño, F., López, P. A., & López-Valdez, F. (2023). The jeopardized soil. In: Bio and Nanoremediation of hazardous environmental pollutants (pp. 3–22): CRC Press.

  • Mokhtari, Z., Amani-Beni, M., Asgarian, A., Russo, A., Qureshi, S., & Karami, A. (2023). Spatial prediction of the urban inter-annual land surface temperature variability: An integrated modeling approach in a rapidly urbanizing semi-arid region. Sustainable Cities and Society, 93, 104523.

    Article  Google Scholar 

  • Nascimento, C. M., de Sousa Mendes, W., Silvero, N. E. Q., Poppiel, R. R., Sayão, V. M., Dotto, A. C., et al. (2021). Soil degradation index developed by multitemporal remote sensing images, climate variables, terrain and soil atributes. Journal of Environmental Management, 277, 111316.

    Article  CAS  Google Scholar 

  • Nelson, D. A., & Sommers, L. (1983). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties, 9, 539–579.

  • Page, A. L., Miller, R. H., & Keeney, D. R. (1982). Methods of soil analysis. Part 2. American Society of Agronomy. Soil Science Society of America, Madison, WI, USA, 4(2), 167–179.

  • Qi, L., Wang, S., Zhuang, Q., Yang, Z., Bai, S., Jin, X., et al. (2019). Spatial-temporal changes in soil organic carbon and pH in the Liaoning Province of China: A modeling analysis based on observational data. Sustainability, 11(13), 3569.

    Article  Google Scholar 

  • Qi, Y., Darilek, J. L., Huang, B., Zhao, Y., Sun, W., & Gu, Z. (2009). Evaluating soil quality indices in an agricultural region of Jiangsu Province. China. Geoderma, 149(3–4), 325–334.

    Article  Google Scholar 

  • Sayão, V. M., dos Santos, N. V., de Sousa Mendes, W., Marques, K. P., Safanelli, J. L., Poppiel, R. R., et al. (2020). Land use/land cover changes and bare soil surface temperature monitoring in southeast Brazil. Geoderma Regional, 22, e00313.

    Article  Google Scholar 

  • Shahnaseri, G., Malekian, M., & Pourmoghadam, K. (2023). Habitat loss of the chestnut-leaved oak (Quercus castaneifolia) in the Hyrcanian forests of Iran: Impacts of anthropogenic factors on forest thinning and degradation. Global Ecology and Conservation, 46, e02600.

    Article  Google Scholar 

  • Sileshi, M., Kadigi, R., Mutabazi, K., & Sieber, S. (2019). Impact of soil and water conservation practices on household vulnerability to food insecurity in eastern Ethiopia: Endogenous switching regression and propensity score matching approach. Food Security, 11, 797–815.

    Article  Google Scholar 

  • Taleshian Jeloudar, F., Ghajar Sepanlou, M., & Emadi, M. (2018). Impact of land use change on soil erodibility. Global Journal of Environmental Science and Management, 4(1), 59–70.

    CAS  Google Scholar 

  • Tsagris, M., & Pandis, N. (2021). Multicollinearity. American Journal of Orthodontics and Dentofacial Orthopedics, 159(5), 695–696.

    Article  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.

    Article  CAS  Google Scholar 

  • Were, K., Bui, D. T., Dick, Ø. B., & Singh, B. R. (2015). A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators, 52, 394–403.

    Article  CAS  Google Scholar 

  • Wu, T., Luo, J., Dong, W., Sun, Y., Xia, L., & Zhang, X. (2019). Geo-object-based soil organic matter mapping using machine learning algorithms with multi-source geo-spatial data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(4), 1091–1106.

    Article  Google Scholar 

  • Wubie, M. A., & Assen, M. (2020). Effects of land cover changes and slope gradient on soil quality in the Gumara watershed, Lake Tana basin of North-West Ethiopia. Modeling Earth Systems and Environment, 6, 85–97.

    Article  Google Scholar 

  • Wynants, M., Kelly, C., Mtei, K., Munishi, L., Patrick, A., Rabinovich, A., et al. (2019). Drivers of increased soil erosion in East Africa’s agro-pastoral systems: Changing interactions between the social, economic and natural domains. Regional Environmental Change, 19, 1909–1921.

    Article  Google Scholar 

  • Yoshimura, M., Maezuka, K., & Toma, Y. (2023). Using surface soil layer depth for determining soil quality index for evaluating productivity of potato (Solanum tuberosum L.) in Hokkaido, Japan. Soil Science and Plant Nutrition, 1–12.

  • Zeraatpisheh, M., Ayoubi, S., Jafari, A., Tajik, S., & Finke, P. (2019). Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma, 338, 445–452.

    Article  CAS  Google Scholar 

  • Zeraatpisheh, M., Bakhshandeh, E., Hosseini, M., & Alavi, S. M. (2020). Assessing the effects of deforestation and intensive agriculture on the soil quality through digital soil mapping. Geoderma, 363, 114139.

    Article  CAS  Google Scholar 

  • Zhao, F., Chen, L., Yen, H., Li, G., Sun, L., & Yang, L. (2020). An innovative modeling approach of linking land use patterns with soil antibiotic contamination in peri-urban areas. Environment International, 134, 105327.

    Article  CAS  Google Scholar 

  • Žížala, D., Minařík, R., & Zádorová, T. (2019). Soil organic carbon mapping using multispectral remote sensing data: Prediction ability of data with different spatial and spectral resolutions. Remote Sensing, 11(24), 2947.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Fatemeh Aghalari: Conceptualization, Contributor to data interpretation, Contributor to manuscript preparation.

Elham Chavoshi: Methodology, Data interpretation, Writing-Original draft preparation.

Sattar Chavoshi Borujeni: Contributor in data interpretation, Data Validation.

Corresponding author

Correspondence to Elham Chavoshi.

Ethics declarations

Declarations

All authors have read, have understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghalari, F., Chavoshi, E. & Borujeni, S.C. Indexing and segment-level mapping of soil quality in a spatially complex watershed in northern Iran. Environ Monit Assess 196, 51 (2024). https://doi.org/10.1007/s10661-023-12212-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12212-7

Keywords

Navigation