Skip to main content

Advertisement

Log in

Soil water repellency in the Brazilian neotropical savanna: first detection, seasonal effect, and influence on infiltrability

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Soil water repellency (SWR) has been detected worldwide in various biomes and climates. However, this phenomenon has not been shown yet in the Brazilian neotropical savanna. The present study addressed the following questions: (a) Does SWR occur in the Brazilian neotropical savanna? If so, (b) does it exhibit seasonality? (c) Does it influence infiltration? To do that, we selected two similar study areas covered by similar soils (oxisol) and vegetation (netropical savanna). We performed water repellency and infiltration tests in both areas during the transition from dry to wet season. Our results indicate that SWR occurs in soils of the Brazilian neotropical savanna only during the dry season and influence water infiltration in the dry season. The likely cause of SWR might be related to the chemical composition of soil organic matter since neotropical savanna plants produce hydrophobic substances as a survival strategy, especially during the dry season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data published in this study are available on request from the corresponding author.

References

  • Alagna, V., Iovino, M., Bagarello, V., Mataix-Solera, J., & Lichner, Ľ. (2017). Application of minidisk infiltrometer to estimate water repellency in Mediterranean pine forest soils. Journal of Hydrology and Hydromechanics, 65(3), 254.

    Article  CAS  Google Scholar 

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes, G., Leonardo, J., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728.

    Article  Google Scholar 

  • Andrade, L. A. Z., Felfili, J. M., & Violatti, L. (2002). Fitossociologia de uma área de cerrado denso na RECOR-IBGE. Brasília-DF. Acta Botanica Brasilica, 16(2), 225–240. https://doi.org/10.1590/S0102-33062002000200009

    Article  Google Scholar 

  • Atanassova, I., & Doerr, S. H. (2011). Changes in soil organic compound composition associated with heat-induced increases in soil water repellency. European Journal of Soil Science, 62(4), 516–532.

    Article  CAS  Google Scholar 

  • Bates, D. M., Chambers, J. M., & Hastie, T. (1992). Statistical models in S. In Computer Science and Statistics: Proceedings of the 19th Symposium on the Interface. Wadsworth & Brooks.

    Google Scholar 

  • Bauer, D. F. (1972). Constructing confidence sets using rank statistics. Journal of the American Statistical Association, 67(339), 687–690.

    Article  Google Scholar 

  • Bayad, M., Chau, H. W., Trolove, S., Moir, J., Condron, L., & Bouray, M. (2020). The relationship between soil moisture and soil water repellency persistence in hydrophobic soils. Water (Switzerland), 12(9). https://doi.org/10.3390/W12092322

  • Bettiol, W., Silva, C. A., Cerri, C. E. P., Martin-Neto, L., & de Andrade, C. A. (2023). Entendendo a matéria orgânica do solo em ambientes tropical e subtropical. CEP, 13918, 110.

    Google Scholar 

  • Bezerra, C. B., de Souza Junior, A. J., Corrêa, M. M., de Sousa Lima, J. R., Santoro, K. R., de Souza, E. S., & de Oliveira, C. L. (2019). Latossolo húmico sob pastagem com diferentes intensidades de usos: atributos químicos e físico-hídricos. Revista Brasileira de Ciências Agrárias, 14(1), 1–9.

    Article  Google Scholar 

  • Bieras, A. C., Sajo, M., & das G. (2009). Leaf structure of the cerrado (Brazilian savanna) woody plants. Trees, 23(3), 451–471.

    Article  Google Scholar 

  • de Brito, G. Q., de Murta, J. R. M., Mendonça Filho, S. F., & Salemi, L. F. (2022). Can rainfall seasonality trigger soil water repellency in a tropical riparian forest? Journal of Forestry Research, 1–8.

  • de Brito, G. Q., Murta, J. R. M., Mendonça Filho, S. F., & Salemi, L. F. (2021). Water infiltration in the domains of the Brazilian tropical savanna: What do we really know? Revista Brasileira de Geografia Física, 14(01), 16–24.

    Article  Google Scholar 

  • Chaves, M. E. D., Mataveli, G., zu Ermgassen, E., de Aragão, R. B., Adami, M., & Sanches, I. D. (2023). Reverse the Cerrado’s neglect. Nature Sustainability, 1–2.

  • da Silva, R. C., Valladares, G. S., Ferreira, E. P., Pereira, M. G., & dos Anjos, L. H. C. (2020). REPELÊNCIA À ÁGUA E FRAÇÕES DA MATÉRIA ORGÂNICA EM ORGANOSSOLOS. REVISTA EQUADOR, 9(1), 97–115.

    Article  Google Scholar 

  • Debano, L. F. (2000). Water repellency in soils: A historical overview. Journal of Hydrology, 231–232. https://doi.org/10.1016/S0022-1694(00)00180-3

  • DeBano, L. F. (1981). Water repellent soils: A state-of-the-art. Gen. Tech. Rep. PSW-46. Berkeley, Calif.: US Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Exp. Stn. 21 P, 46.

  • Decagon Devices. (2012). Minidisk Infiltrometer User’s Manual Version 10. Decagon Pullman.

    Google Scholar 

  • Deurer, M., Müller, K., Van Den Dijssel, C., Mason, K., Carter, J., & Clothier, B. E. (2011). Is soil water repellency a function of soil order and proneness to drought? A survey of soils under pasture in the North Island of New Zealand. European Journal of Soil Science, 62(6), 765–779.

    Article  CAS  Google Scholar 

  • de Farias Neto, A. L., & Faleiros, F. G. (2009). Savanas: demandas para pesquisa (p. 2009). Embrapa Cerrados.

    Google Scholar 

  • de Murta, J. R. M., de Brito, G. Q., Mendonça Filho, S. F., Hoffmann, M. R., & Salemi, L. F. (2020). Understanding the effect of an agroforestry system with high litter input on topsoil permeability. Soil Use and Management.

  • de Souza, E. D., Carneiro, M. A. C., Paulino, H. B., Ribeiro, D. O., Bayer, C., & Rotta, L. A. (2016). Matéria orgânica e agregação do solo após conversão de" campos de murundus" em sistema plantio direto. Pesquisa Agropecuária Brasileira, 51, 1194–1202.

    Article  Google Scholar 

  • do Ferreira, A. N., de Almeida, A., Koide, S., Minoti, R. T., & de Siqueira, M. B. B. (2021). Evaluation of evapotranspiration in Brazilian Cerrado Biome simulated with the SWAT model. Water, 13(15), 2037.

    Article  Google Scholar 

  • Emeribe, C. N., Ezeh, C. U., & Butu, A. W. (2021). Modelling climatic water balance for water stress-detection for select crops under climate variability in the Sudano-Guinean Savanna, Nigeria. Modeling Earth Systems and Environment, 7, 715–735.

    Article  Google Scholar 

  • Farias, M. F. R., Carvalho, A. P. F., Martins, E. S., Carvalho Júnior, O. A., Reatto, A., & Gomes, R. A. T. (2008). Levantamento de Solos do Parque Nacional de Brasília, Escala 1:50.000. Boletim de Pesquisa e Desenvolvimento, 220, 66.

  • Franco, J. M., & Uzunian, A. (2010). In J. E. Emöd (Ed.), Cerrado Brasileiro (2a Edição ed.). Editora Harbra.

    Google Scholar 

  • Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32(200), 675–701.

    Article  Google Scholar 

  • Gao, H., Hrachowitz, M., Sriwongsitanon, N., Fenicia, F., Gharari, S., & Savenije, H. H. G. (2016). Accounting for the influence of vegetation and landscape improves model transferability in a tropical savannah region. Water Resources Research, 52(10), 7999–8022.

    Article  Google Scholar 

  • Garcia-Montiel, D. C., Coe, M. T., Cruz, M. P., Ferreira, J. N., da Silva, E. M., & Davidson, E. A. (2008). Estimating seasonal changes in volumetric soil water content at landscape scales in a savanna ecosystem using two-dimensional resistivity profiling. Earth Interactions, 12(2), 1–25.

    Article  Google Scholar 

  • Giácomo, R. G., Pereira, M. G., Guareschi, R. F., & Machado, D. L. (2015). Atributos químicos e físicos do solo, estoques de carbono e nitrogênio e frações húmicas em diferentes formações vegetais. Ciência Florestal, 25, 617–631.

    Article  Google Scholar 

  • Goebel, M., Bachmann, J., Reichstein, M., Janssens, I. A., & Guggenberger, G. (2011). Soil water repellency and its implications for organic matter decomposition–is there a link to extreme climatic events? Global Change Biology, 17(8), 2640–2656.

    Article  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.

    Google Scholar 

  • Hollander, M., Wolfe, D. A., & Chicken, E. (2013). Nonparametric statistical methods. John Wiley & Sons.

    Google Scholar 

  • Hunke, P., Mueller, E. N., Schröder, B., & Zeilhofer, P. (2015). The Brazilian Cerrado: Assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology, 8(6), 1154–1180. https://doi.org/10.1002/eco.1573

    Article  Google Scholar 

  • Ibama. (1998). Plano de Manejo do Parque Nacional de Brasília.

  • Johnson, M. S., Lehmann, J., Steenhuis, T. S., De Oliveira, L. V., & Fernandes, E. C. M. (2005). Spatial and temporal variability of soil water repellency of Amazonian pastures. Australian Journal of Soil Research, 43(3), 319–326. https://doi.org/10.1071/SR04097

    Article  Google Scholar 

  • Jordán, A., Zavala, L. M., Mataix-Solera, J., & Doerr, S. H. (2013). Soil water repellency: Origin, assessment and geomorphological consequences. Catena, 108. https://doi.org/10.1016/j.catena.2013.05.005

  • Junqueira, R., Viola, M. R., da Amorim, J. S., & de Mello, C. R. (2020). Hydrological response to drought occurrences in a Brazilian savanna basin. Resources, 9(10), 123.

    Article  Google Scholar 

  • Lichner, L., Felde, V. J., Büdel, B., Leue, M., Gerke, H. H., Ellerbrock, R. H., Kollár, J., Rodný, M., Šurda, P., & Fodor, N. (2018). Effect of vegetation and its succession on water repellency in sandy soils. Ecohydrology, 11(6), e1991.

    Article  Google Scholar 

  • Lozano-Baez, S. E., Cooper, M., de Barros Ferraz, S. F., Rodrigues, R. R., Lassabatere, L., Castellini, M., & Di Prima, S. (2020). Assessingwater infiltration and soil water repellency in Brazilian atlantic forest soils. Applied Sciences (Switzerland), 10(6). https://doi.org/10.3390/app10061950

  • Machado, R. B., Aguiar, L., & Silva, J. M. C. (2023). Brazil: Plan for zero vegetation loss in the Cerrado. Nature, 615(7951), 216.

    Article  CAS  Google Scholar 

  • Magomani, M. I., & Van Tol, J. J. (2019). The impact of fire frequency on selected soil physical properties in a semi-arid savannah thornveld. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 69(1), 43–51.

    CAS  Google Scholar 

  • Mao, J., Nierop, K. G. J., Dekker, S. C., Dekker, L. W., & Chen, B. (2019). Understanding the mechanisms of soil water repellency from nanoscale to ecosystem scale: a review. Journal of Soils and Sediments, 19(1), 171–185.

    Article  Google Scholar 

  • Marquart, A., Goldbach, L., & Blaum, N. (2020). Soil-texture affects the influence of termite macropores on soil water infiltration in a semi-arid savanna. Ecohydrology, 13(8), e2249.

    Article  Google Scholar 

  • Martins, C. R., Hay, J. D. V., Valls, J. F. M., Leite, L. L., & Henriques, R. P. B. (2007). Levantamento das gramíneas exóticas do Parque Nacional de Brasília, Distrito Federal, Brasil.

  • Mendonça Filho, S. F., Queiroz de Brito, G., de Melo, R., Murta, J., & Salemi, L. F. (2022). Invasion in the riparian zone: What is the effect of Pteridium arachnoideum on topsoil permeability? Acta Oecologica, 117(January). https://doi.org/10.1016/j.actao.2022.103867

  • Mettrop, I. S., Cammeraat, L. H., & Verbeeten, E. (2013). The impact of subterranean termite activity on water infiltration and topsoil properties in Burkina Faso. Ecohydrology, 6(2), 324–331.

    Article  Google Scholar 

  • Mielnik, L., Hewelke, E., Weber, J., Oktaba, L., Jonczak, J., & Podlasiński, M. (2021). Changes in the soil hydrophobicity and structure of humic substances in sandy soil taken out of cultivation. Agriculture, Ecosystems & Environment, 319, 107554.

    Article  CAS  Google Scholar 

  • Moody, J. A., Ebel, B. A., Nyman, P., Martin, D. A., Stoof, C., & McKinley, R. (2016). Relations between soil hydraulic properties and burn severity. International Journal of Wildland Fire, 25(3), 279–293.

    Article  Google Scholar 

  • Müller, K., Deurer, M., Jeyakumar, P., Mason, K., van den Dijssel, C., Green, S., & Clothier, B. (2014). Temporal dynamics of soil water repellency and its impact on pasture productivity. Agricultural Water Management, 143, 82–92.

    Article  Google Scholar 

  • Nóbrega, R. L. B., Guzha, A. C., Torres, G. N., Kovacs, K., Lamparter, G., Amorim, R. S. S., Couto, E., & Gerold, G. (2017). Effects of conversion of native cerrado vegetation to pasture on soil hydro-physical properties, evapotranspiration and streamflow on the Amazonian agricultural frontier. PLoS ONE, 12(6), 1–23. https://doi.org/10.1371/journal.pone.0179414

    Article  CAS  Google Scholar 

  • Novaes, P., Molinillo, J. M. G., Varela, R. M., & Macias, F. A. (2013). Ecological phytochemistry of Cerrado (Brazilian savanna) plants. Phytochemistry Reviews, 12, 839–855.

    Article  CAS  Google Scholar 

  • Oliveira, P. T. S., Wendland, E., Nearing, M. A., Scott, R. L., Rosolem, R., & Da Rocha, H. R. (2015). The water balance components of undisturbed tropical woodlands in the Brazilian cerrado. Hydrology and Earth System Sciences, 19(6), 2899–2910. https://doi.org/10.5194/hess-19-2899-2015

    Article  Google Scholar 

  • Olorunfemi, I. E., & Fasinmirin, J. T. (2017). Land use management effects on soil hydrophobicity and hydraulic properties in Ekiti State, forest vegetative zone of Nigeria. Catena, 155, 170–182.

    Article  CAS  Google Scholar 

  • Olorunfemi, I. E., Ogunrinde, T. A., & Fasinmirin, J. T. (2014). Soil hydrophobicity: an overview. Journal of Scientific Research and Reports, 3, 1003–1037.

    Article  Google Scholar 

  • Pereira, B. A. S., & Silva, M. A. (2011). Flora fanerogâmica da Reserva Ecológica do IBGE. Reserva Ecológica Do IBGE: Biodiversidade Terrestre, 2, 23–37.

    Google Scholar 

  • Pereira, L. C., Balbinot, L., Nnadi, E. O., Mosleh, M. H., & Tonello, K. C. (2022). Effects of Cerrado restoration on seasonal soil hydrological properties and insights on impacts of deforestation and climate change scenarios. Frontiers in Forests and Global Change, 5, 882551.

    Article  Google Scholar 

  • Pereira, P., Úbeda, X., Mataix-Solera, J., Oliva, M., & Novara, A. (2014). Short-term changes in soil Munsell colour value, organic matter content and soil water repellency after a spring grassland fire in Lithuania. Solid Earth, 5(1), 209–225.

    Article  Google Scholar 

  • Ribeiro, J., & Walter, B. M. (2008). As principais fitofisionomias do bioma Cerrado. In Cerrado: ecologia e flora (pp. 151–212). Embrapa Cerrados.

    Google Scholar 

  • Ribeiro, M. L. (2011). Reserva Ecológica do IBGE: biodiversidade terrestre. Coordenação de Recursos Naturais e Estudos Ambientais.

    Google Scholar 

  • Robichaud, P. R., Wagenbrenner, J. W., Pierson, F. B., Spaeth, K. E., Ashmun, L. E., & Moffet, C. A. (2016). Infiltration and interrill erosion rates after a wildfire in western Montana, USA. Catena, 142, 77–88.

    Article  Google Scholar 

  • Sándor, R., Iovino, M., Lichner, L., Alagna, V., Forster, D., Fraser, M., Kollár, J., Šurda, P., Nagy, V., Szabó, A., & Fodor, N. (2021). Impact of climate, soil properties and grassland cover on soil water repellency. Geoderma, 383(October 2020). https://doi.org/10.1016/j.geoderma.2020.114780

  • Sándor, R., Lichner, Ľ., Filep, T., Balog, K., Lehoczky, É., & Fodor, N. (2015). Spatial variability of hydrophysical properties of fallow sandy soils. Biologia, 70(11), 1468–1473.

    Article  Google Scholar 

  • Sano, E. E., Rodrigues, A. A., Martins, E. S., Bettiol, G. M., Bustamante, M. M. C., Bezerra, A. S., Couto, A. F., Jr., Vasconcelos, V., Schüler, J., & Bolfe, E. L. (2019). Cerrado ecoregions: A spatial framework to assess and prioritize Brazilian savanna environmental diversity for conservation. Journal of Environmental Management, 232, 818–828.

    Article  Google Scholar 

  • Sano, E. E., Rosa, R., Brito, J. L. S., & Ferreira, L. G. (2008). Mapeamento semidetalhado do uso da terra do Bioma Cerrado. Pesquisa Agropecuária Brasileira, 43(1), 153–156.

    Article  Google Scholar 

  • Sano, S., Almeida, S., & Ribeiro, J. (2008). Cerrado: ecologia e flora (Vol. 1, p. 279p). Embrapa.

    Google Scholar 

  • Spera, S. A., Galford, G. L., Coe, M. T., Macedo, M. N., & Mustard, J. F. (2016). Land-use change affects water recycling in Brazil’s last agricultural frontier. Global Change Biology, 22(10), 3405–3413.

    Article  Google Scholar 

  • Strassburg, B. B. N., Brooks, T., Feltran-Barbieri, R., Iribarrem, A., Crouzeilles, R., Loyola, R., Latawiec, A. E., Oliveira Filho, F. J. B., De Scaramuzza, C. A. M., Scarano, F. R., Soares-Filho, B., & Balmford, A. (2017). Moment of truth for the Cerrado hotspot. Nature Ecology and Evolution, 1(4), 1–3. https://doi.org/10.1038/s41559-017-0099

    Article  Google Scholar 

  • Troch, P. A., Carrillo, G. A., Heidbüchel, I., Rajagopal, S., Switanek, M., Volkmann, T. H. M., & Yaeger, M. (2009). Dealing with landscape heterogeneity in watershed hydrology: A review of recent progress toward new hydrological theory. Geography Compass, 3(1), 375–392.

    Article  Google Scholar 

  • Van Tol, J., Julich, S., Bouwer, D., & Riddell, E. S. (2020). Hydrological response in a savanna hillslope under different rainfall regimes. Koedoe: African Protected Area Conservation and Science, 62(2), 1–10.

    Google Scholar 

  • Varanda, E. M., Ricci, C. V., & Brasil, I. M. (1998). Espécies congenéricas da mata e do cerrado: teor de proteínas e compostos fenólicos. Boletim de Botânica Da Universidade de São Paulo, 25–30.

  • Vogelmann, E. S., Reichert, J. M., Prevedello, J., Awe, G. O., & Reinert, D. J. (2015). Soil hydrophobicity: Comparative study of usual determination methods | Hidrofobicidade do solo: Estudo comparativo dos métodos usuais de determinação. Ciencia Rural, 45(2). https://doi.org/10.1590/0103-8478cr20140042

  • Vogelmann, E. S., Reichert, J. M., Reinert, D. J., Mentges, M. I., Vieira, D. A., de Barros, C. A. P., & Fasinmirin, J. T. (2010). Water repellency in soils of humid subtropical climate of Rio Grande do Sul, Brazil. Soil and Tillage Research, 110(1), 126–133. https://doi.org/10.1016/j.still.2010.07.006

    Article  Google Scholar 

  • Wang, Z., Wu, Q. J., Wu, L., Ritsema, C. J., Dekker, L. W., & Feyen, J. (2000). Effects of soil water repellency on infiltration rate and flow instability. Journal of Hydrology, 231–232. https://doi.org/10.1016/S0022-1694(00)00200-6

  • White, A. M., Lockington, D. A., & Gibbes, B. (2017). Does fire alter soil water repellency in subtropical coastal sandy environments? Hydrological Processes, 31(2). https://doi.org/10.1002/hyp.11000

  • Zhang, R. (1997). Determination of soil sorptivity and hydraulic conductivity from the disk infiltrometer. Soil Science Society of America Journal, 61(4), 1024–1030.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the staff of the following institutions: Brasília National Park, Chico Mendes Instituto for Biodiversity Conservation (ICMBio) and Ecological Reserve of the Brazilian Institute of Geography and Statistics (RECOR-IBGE).

Author information

Authors and Affiliations

Authors

Contributions

Juliana Farias de Lima Oliveira: conceptualization, methodology, formal analysis, original draft preparation, study design, methodology, data curation, and validation. Sérgio Fernandes Mendonça Filho: conceptualization, methodology, data curation, original draft preparation. Luiz Felippe Salemi: supervision, project administration, validation, review, and editing.

Corresponding author

Correspondence to Juliana Farias de Lima Oliveira.

Ethics declarations

All authors have read, understood, and have complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the instructions for authors.

Ethics approval and consent to participate

The study, therefore, adhered to existing research ethics principles such as obtaining verbal consent to participate in research, retaining personal information privacy, and allowing participants to withdraw their consent if they so wished at any point. In addition, no personal information was used in this analysis. Informed consent was obtained from all individual participants included in the study.

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Fig. 1S

Monthly precipitation in the two study areas: Brasília National Park - BNP (light blue) and Ecological Reserve of the Brazilian Institute of Geography and Statistics - RECOR (blue).

Fig 2S.

Water Drop Penetration Time in two studied areas: Brasília National Park - BNP (a) and Ecological Reserve of the Brazilian Institute of Geography and Statistics - RECOR (b).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima Oliveira, J.F., Mendonça Filho, S.F. & Salemi, L.F. Soil water repellency in the Brazilian neotropical savanna: first detection, seasonal effect, and influence on infiltrability. Environ Monit Assess 195, 1504 (2023). https://doi.org/10.1007/s10661-023-12097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12097-6

Keywords

Navigation