Skip to main content

Advertisement

Log in

Enhancing the accuracy of digital soil mapping using the surface and subsurface soil characteristics as continuous diagnostic layers

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Digital soil mapping relies on relating soils to a particular set of covariates, which capture inherent soil spatial variation. In digital mapping of soil classes, the most commonly used covariates are topographic attributes, RS attributes, and maps, including geology, geomorphology, and land use; in contrast, the subsurface soil characteristics are usually ignored. Therefore, we investigate the possibility of using soil diagnostic characteristics as covariates in a mountainous landscape as the main aim of this study. Conventional covariates (CC) and a combination of soil subsurface covariates with conventional covariates (SCC) were used as covariates, and random forest (RF), Multinomial Logistic Regression (LR), and C5.0 Decision Trees (C5) were used as different machine learning algorithms in digital mapping of soil family classes. Based on the results, the RF model with the SCC dataset had the best performance (KC = 0.85, OA = 90). In all three models, adding soil covariates to the sets of covariates increased the model performance. Soil covariates, slope, and aspect were selected as the principal auxiliary variables in describing the distribution of soil family classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Angelini, M. E., Heuvelink, G. B. M., Kempen, B., & Morrás, H. J. M. (2016). Mapping the soils of an Argentine Pampas region using structural equation modelling. Geoderma, 281, 102–118.

    Article  Google Scholar 

  • Assami, T., & Hamdi-Aїssa, B. (2019). Digital mapping of soil classes in Algeria- a comparison of methods. Geoderma Regional, 16https://doi.org/10.1016/j.geodrs.2019.e00215

  • Ballabio, C. (2009). Spatial Prediction of Soil Properties in Temperate Mountain Regions Using Support Vector Regression Geoderma., 151(3–4), 338–350.

    Google Scholar 

  • Baruck, J., Nestroy, O., Sartori, G., Baize, D., Traidl, R., Vrscaj, B., Bram, E., Gruber, F. E., Heinrich, K., & Geitner, C. (2016). Soil Classification and mapping in the Alps: The current state and future challenges. Geoderma, 264, 312–331.

    Article  CAS  Google Scholar 

  • Basayigit, L., & Senol, S. (2008). Comparison of soil maps with different scales and details belonging to the Same area. Soil & Water Res., 1, 31–39.

    Article  Google Scholar 

  • Beulah, R., Punithavalli, 2019. Performance analysis of decision tree algorithm C5.0 using heavy metal contamination in agricultural soil at Coimbatore. International Journal of Scientific & engineering Research, 10.

  • Boettinger, J. L. (2010). Environmental covariates for digital soil mapping in the western USA. In J. L. Boettinger, D. W. Howell, A. C. Moore, A. E. Hartemink, & S. Kienast-Brown (Eds.), Digital soil mapping: Bridging research, environmental application, and operation (pp. 17–27). Springer. https://doi.org/10.1007/978-90-481-8863-5

  • Brungard, C. W., Boettinger, J. L., Duniway, M. C., Wills, S. A., & Edwards, T. C., Jr. (2015). Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma, 239, 68–83.

    Article  Google Scholar 

  • Brungard, C. W., & Boettinger, J. L. (2010). Conditioned Latin hypercube sampling: Optimal sample size for digital soil mapping of arid rangelands in Utah, USA. Digital Soil Mapping: Bridging Research, Environmental Application, and Operation, 2, 67–75. https://doi.org/10.1007/978-90-481-8863-5_6

    Article  Google Scholar 

  • Bui, E. N., & Moran, C. J. (2003). A strategy to fill gaps in soil survey over large spatial extents: An example from the Murray-Darling basin of Australia. Geoderma, 111, 21–44.

    Article  Google Scholar 

  • Cahyana, D., Barus, B., Darmavan, Mulyanto, B., & Sulaeman, Y. (2021). Assessing machine learning techniques for detailing soil map in the semiarid tropical region. IOP Conf. Series: Earth and Environmental Science, 648(1), 012018. https://doi.org/10.1088/1755-1315/648/1/012018

  • Cahyana, D., Sulaeman, Y., Barus, B., Darmavan, D., & Mulyanto, B. (2023). Improving digital soil mapping in Bogor, Indonesia using parent material information. Geoderma Regional, 33,. https://doi.org/10.1016/j.geodrs.2023.e00627

  • Camera, C., Zomeni, Z., Noller, J. S., Zissimos, A. M., Christoforou, I. C., & Bruggeman, A. (2017). A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization. Geoderma, 286, 35–49.

    Article  Google Scholar 

  • Chen, S., Arrouays, D., LeatitiaMulder, V., Poggio, L., Minasny, B., Roudier, P., Libohova, Z., Lagacherie, P., Shi, Z., Hannam, J., Meersmans, J., Richer-de-Forges, A. C., & Walter, C. (2022). Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma, 409https://doi.org/10.1016/j.geoderma.2021.115567

  • Collard, F., Kempen, B., Heuvelink, G. B., Saby, N. P., de Forges, A. C. R., Lehmann, S., Nehlig, P., & Arrouays, D. (2014). Refining a reconnaissance soil map by calibrating regression models with data from the same map (Normandy, France). Geoder. Reg., 1, 21–30.

    Article  Google Scholar 

  • Dobos, E., Micheli, E., Baumgardner, M., Biehl, L., & Helt, T. (2000). Use of combined digital elevation model and satellite radiometric data for regional soil mapping. Geoderma, 97, 367–391.

    Article  Google Scholar 

  • Esfandiarpour-Boroujeni, I., Shahini-Shamsabadi, M., Shirani, H., Mosleh, Z., Bagheri-Bodaghabadi, M., & Salehi, M. H. (2020). Assessment of different digital soil mapping methods for prediction of soil classes in the Shahrekord Plain. Central Iran. Catena, 193https://doi.org/10.1016/j.catena.2020.104648

  • Fan, N. Q., Zhao, F. H., Zhu, L. J., Qin, C. Z., & Zhu, A. X. (2022). Digital soil mapping with adaptive consideration of the applicability of environmental covariates over large areas. International Journal of Applied Earth Observation and Geoinformation, 113https://doi.org/10.1016/j.jag.2022.102986

  • Fernandes Coelho, F., Giasson, E., Campos, A. R., Tiecher, T., Ferreira Costa, J. J., & Coblinski, J. A. (2021). Digital soil class mapping in Brazil: Asystematic review. Soil and Plant Nutrition, 78(5). https://doi.org/10.1590/1678-992X-2019-0227

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis, Part 1. Physical and mineralogical methods, agronomy monograph (No. 9, 2nd ed., pp. 383–411). American Society of Agronomy/Soil Science Society of America.

  • Geological Survey of Iran, 1995. Geological quadrangle map. NoI11. Geology Organization of Iran.

  • Grunwald, S. (2009). Multi-criteria characterization of recent digital soil mapping and modelling approaches. Geoderma, 152(3–4), 195–207.

    Article  Google Scholar 

  • Han, X., Liu, J., Shen, X., Liu, H., Li, X., Zhang, J., Wu, P., & Liu, Y. (2022). High relief yield strong topography-soil water-vegetation relationships in headwater catchments of southeastern China. Geoderma, 428https://doi.org/10.1016/j.geoderma.2022.116214

  • Häring, T., Dietz, E., Osenstetter, S., Koschitzki, T., & Schröder, B. (2012). Spatial disaggregation of complex soil map units: Adecision-tree based approach in Bavarian forest soils. Geoderma, 185–186, 37–47.

    Article  Google Scholar 

  • Huete, A. R., Liu, H. Q., Batchily, K., & Van Leeuwen, W. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59, 440–451. https://doi.org/10.1016/S0034-4257(96)00112-5

    Article  Google Scholar 

  • Kariminejad, N., Pourghasemi, H. R., Maleki, S., & Hosseinalizadeh, M. (2022a). Digital soil mapping and modeling in Loess-derived soils of Iranian Loess Plateau. Geocarto International, 37(26), 11633–11651.

  • Kariminejad, N., Hosseinalizadeh, M., & Pourghasemi, H. R. (2022b). Digital soil mapping of soil bulk density in loess derived-soils with complex topography. Computers in Earth and Environmental Sciences, 593–599,. https://doi.org/10.1016/B978-0-323-89861-4.00018-X

  • Karnieli, A. (1997). Development and implementation of spectral crust index over dune sands. International Journal of Remote Sensing, 18, 1207–1220.

    Article  Google Scholar 

  • Khaledian, Y., & Miller, B. A. (2020). Selecting appropriate machine learning methods for digital soil mapping. Applied Mathematical Modelling, 81, 401–418.

    Article  Google Scholar 

  • Khitrov, N. B. (2012). The development of detailed soil maps on the basis of interpolation of data on soil properties. Eurasian Soil Science., 45, 918–928.

    Article  Google Scholar 

  • Kienast-Brown, S., Libohova, Z., USDA-NRCS, Boettinger, J., & Utah State University. (2017). Digital soil mapping. In C. Ditzler, K. Scheffe, & H. C. Monger (Eds.), Soil survey manual (pp. 295–354). USDA Handbook 18. Government Printing Office.

  • Liaw, A., Wiener, M., 2014. RandomForest: Breiman and Cutler’s random forests for classification and regression. R package version 4.6–10. Available at http://cran.r-project.org/web/packages/randomForest/randomForest.pdf

  • Liu, F., Wu, H., Zhao, Y., Li, D., Yang, J. L., Song, X., Shi, Z., Zhu, A. X., & Zhang, G. L. (2022). Mapping high resolution National Soil Information Grids of China. Sci. Bull., 67(3), 328–340. https://doi.org/10.1016/j.scib.2021.10.013

    Article  Google Scholar 

  • Malone, B. P., Minasny, B., & McBratney, A. B. (2017). Some methods for the quantification of prediction uncertainties for digital soil mapping. In Using R for digital soil mapping (pp. 169–219). Springer. https://doi.org/10.1007/978-3-319-44327-0

  • Mandal, U. K. (2016). Spectral color indices based geospatial modelling of soil organic matter in Chitwan district, Nepal. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B2, 43–48. https://doi.org/10.5194/isprs-archives-XLI-B2-43-2016

  • Ma, Y., Minasny, B., Malone, B. P., & Mcbratney, A. B. (2019). Pedology and digital soil mapping (DSM). European Journal of Soil Science, 70(2), 216–235. https://doi.org/10.1111/ejss.12790

    Article  Google Scholar 

  • McBratney, A. B., Mendonça Santos, M. L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117, 3–52.

    Article  Google Scholar 

  • Menezes, M. D., Bispo, F. H. A., Faria, W. M., Gonçalves, M. G. M., Curi, N., & Guilherme, L. R. G. (2020). Modeling arsenic content in Brazilian soils: what is relevant? Sci. Total Environ., 712, 136511.

  • Minai, J., Libohova, Z., & Schulze, D. G. (2020). Disaggregation of the 1:100,000 reconnaissance soil map of the Busia Area, Kenya using a soil landscape rule-based approach. Catena, 195,. https://doi.org/10.1016/j.catena.2020.104806

  • Minasny, B., & McBratney, A. B. (2007). Incorporating taxonomic distance into spatial prediction and digital mapping of soil classes. Geoderma, 142, 285–293.

    Article  Google Scholar 

  • Monterio, M. E. C., Avalos, F. P., Pelegrino, M. P., Vilela, R. B., Junior, F. W. A., Bueno, I. T., Li, N., Silva, S. H. G., Giasson, E., Curi, N., & Menezes, M. D. (2023). Digital mapping of soil classes in southeast Brazil: Environmental covariate selection, accuracy, and uncertainty. Journal of South America Earth Sciences, 132, 10640. https://doi.org/10.1016/j.jsames.2023.104640

    Article  CAS  Google Scholar 

  • National Cartographic Center of Iran. (2014). Research Institute of National Cartographic Center.

  • Neguyen, C. T., Chidthaison, A., Diem, P. K., & Huo, L. Z. (2021). A modified bare soil index to identify bare land features during agricultural fallow-period in southeast Asia using Landsat 8. Land, 10, 231.

    Article  Google Scholar 

  • Neyestani, M., Sarmadian, F., Jafari, A., Keshavarzi, A., & Sharififar, A. (2021). Digital mapping of soil classes using spatial extrapolation with imbalanced data. Geoderma Regional, 26https://doi.org/10.1016/j.geodrs.2021.e00422

  • Nussbaum, M., Spiess, K., Baltensweiler, A., Grob, U., Keller, A., Greiner, L., Schaepman, M. E., & Papritz, A. (2018). Evaluation of digital soil mapping approaches with large sets of environmental covariates. The Soil, 4(1), 1–22.

    Article  Google Scholar 

  • Odgers, N. P., McBratney, A. B., & Minasny, B. (2011). Bottom-up digital soil mapping. I. Soil Layer Classes. Geoderma., 163, 38–44.

    Google Scholar 

  • Osat, M., Heidari, A., Karimian Eghbal, M., & Mahmoodi, S. (2016). Impacts of topographic attributes on Soil Taxonomic Classes and weathering indices in a hilly landscape in Northern Iran. Geoderma, 281, 90–101.

    Article  Google Scholar 

  • Osat, M., Heidari, A., & Salami, A. (2020). The use of continuous soil diagnostic layers as criteria for differentiation of soil map units. Arabian Journal of Geosciences, 13, 1157.

    Article  Google Scholar 

  • Ourchefani, D., Dhaou, H., Abdeljaoued, S., Delaitre, E., & Callot, S. (2009). Radiometric indices for monitoring soil surfaces in south Tunisia. Journal of Arid Land Studies, 19–1, 73–76.

    Google Scholar 

  • Pahlavan-Rad, M. R., Khormali, F., Toomanian, N., Brungard, C. W., Kiani, F., Komaki, C. B., & Bogaert, P. (2016). Legacy soil maps as a covariate in digital soil mapping: A case study from Northern Iran. Geoderma, 279, 141–148.

    Article  Google Scholar 

  • Paul, S. S., Coops, N. C., Johnson, M. S., Krzic, M., Chandna, A., & Smukler, S. M. (2020). Mapping soil organic carbon and clay using remote sensing to predict soil workability for enhanced climate change adaption. Geoderma, 363https://doi.org/10.1016/j.geoderma.2020.114177

  • Peng, L., Cheng-zhi, Q., A-xing, Z., Zhi-wei, H., Nai-qing, F., & Yi-jie, W. (2020). A case-based method of selecting covariates for digital soil mapping. Journal of Integrative Agriculture, 19(8), 2127–2136.

    Article  Google Scholar 

  • Pusch, M., Samuel-Rosa, A., Graziano Magalhaes, P. S., & Rios do Amaral, L. (2023). Covariates in sample planning optimization for digital soil fertility mapping in agricultural area. Geoderma, 429https://doi.org/10.1016/j.geoderma.2022.116252

  • Quinlan, J.R., 1993. In: Kauffmann, Morgan (Ed.), C4. 5: Programming for machine learning. 38. pp. 48.

  • R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org

  • Richer-de-Forges, A. C., Chen, Q., Baghdadi, N., Chen, S., Gomez, C., Jacquemoud, S., Martelet, G., Mulder, V. L., Urbina-Salazar, D., Vaudour, E., et al. (2023). remote sensing data for digital soil mapping in French research—a review. Remote Sens., 15, 3070. https://doi.org/10.3390/rs15123070

    Article  Google Scholar 

  • Rogowski, A. S., & Wolf, J. K. (1994). Incorporating variability into soil map unit delineations. Soil Science Society of America Journal, 58, 163–174.

    Article  Google Scholar 

  • SAGA Development Team, 2011. System for Automated Geoscientific Analyses (SAGA). (Available at http://www.saga-gis.org/en/index.html ,verified 28 October 2014).

  • Salehi, M. H., Karimian Eghbal, M., & Khademi, H. (2003). Comparison of soil variability in a detailed and a reconnaissance soil map in central Iran. Geoderma, 111, 45–56.

    Article  Google Scholar 

  • Saurette, D. D., Berg, A. A., Laamrani, A., Heck, R., Gillespie, A., & Voroney, P. (2022). Effects of sample size and covariate resolution on fieldscale predictive digital mapping of soil carbon. Geoderma, 425,  116054. https://doi.org/10.1016/j.geoderma.2022.116054

  • Scull, P., Franklin, J., & Chadwick, O. A. (2005). The application of classification tree analysis to soil type prediction in a desert landscape. Ecological Modeling, 181, 1–15.

    Article  Google Scholar 

  • Sharififar, A., Sarmadian, F., Malone, B. P., & Minasny, B. (2019). Addressing the issue of digital mapping of soil classes with imbalanced class observations. Geoderma, 350, 84–92.

    Article  Google Scholar 

  • Silva, B. P. C., Silva, M. L. N., Avalos, F. A. P., Menezes, M. D., & Curi, N. (2019). Digital soil mapping including additional point sampling in Posses ecosystem services pilot watershed, southeastern Brazil. Scientific Reports, 9, 13763. https://doi.org/10.1038/s41598-019-50376-w

    Article  CAS  Google Scholar 

  • Siqueira, D. S., Marques, J., Jr., Pereira, G. T., Teixeira, D. B., Vasconcelos, V., Carvalho Junior, O. A., & Martins, E. S. (2015). Detailed mapping unit design based on soil-landscape relation and spatial variability of magnetic susceptibility and soil color. CATENA, 135, 149–162.

    Article  CAS  Google Scholar 

  • Skidmore, A. K., Watford, F., Luckananurug, P., & Ryan, P. J. (1996). An operational GIS expert system for mapping forest soils. Photogrammetric Engineering and Remote Sensing, 62, 501–511.

    Google Scholar 

  • Smit, I. E., Van Zijl, G. M., Riddell, E. S., & Van Tol, J. J. (2023). Downscaling legacy soil information for hydrological soil mapping using multinomial logistic regression. Geoderma, 436, https://doi.org/10.1016/j.geoderma.2023.116568

  • Soil Survey Staff. (2022). Keys to soil taxonomy (13th ed.). U. S. Department of Agriculture.

    Google Scholar 

  • Sommer, M., Wehrhan, M., Zipprich, M., Castell, Z. W., Weller, U., Castell, W., Ehrich, S., Tandler, B., & Selige, T. (2003). Hierarchical data fusion for mapping soil units at field scale. Geoderma, 112, 179–196.

    Article  Google Scholar 

  • Stumpf, F., Schmidt, K., Behrens, T., Schönbrodt-Stitt, S., Buzzo, G., Dumperth, C., Wadoux, A., Xiang, W., & Scholten, T. (2016). Incorporating limited field operability and legacy samples in a hypercube sampling design for digital soil mapping. Journal of Plant Nutrition and Soil Science, 179, 499–509.

    Article  CAS  Google Scholar 

  • Taghizadeh, R., Minasny, B., Mcbratney, A. B., & Triantafilis, J. (2012). Digital soil mapping of soil classes using decision trees in central Iran. In B. Minasny, B. P. Malone, & A. B. McBratney (Eds.), Book: Digital soil assessments and beyond (pp. 197–202). Taylor & Francis. https://doi.org/10.1201/b12728-40

  • Taghizadeh-Mehrjardi, R., Minasny, B., Toomanian, N., Zeraatpisheh, M., Amirian-Chakan, A., & Triantafilis, J. (2019). Digital mapping of soil classes using ensemble of models in Isfahan region. Iran. Soil System, 3(2), 37.

    Article  Google Scholar 

  • Vaysse, K., & Lagacherie, P. (2017). Using quantile regression forest to estimate uncertainty of digital soil mapping products. Geoderma, 291, 55–64.

    Article  Google Scholar 

  • Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Springer.

    Book  Google Scholar 

  • Vincent, S., Lamercier, B., Berthier, L., & Walter, C. (2016). Spatial disaggregation of complex soil map units at the regional scale based on soil-landscape relationships. Geoderma, 06, 006.

    Google Scholar 

  • Walkey, A., & Black, I. A. (1934). An examination of degtjareff method for determining soil organic matter and a proposed modification of the chromic acid in soil analysis. 1. Experimental. Soil Science Society of American Journal., 79, 459–465.

    Google Scholar 

  • Zeraatpisheh, M., Jafari, A., Bodaghabadi, M. B., Ayoubi, S., Taghizadeh-Mehrjardi, R., Toomanian, N., Kerry, R., & Xu, M. (2020). Conventional and digital soil mapping in Iran: Past, present, and future. CATENA, 188, 104424.

    Article  Google Scholar 

  • Zeraatpisheh, M., Garosi, Y., Owliaie, H. R., Ayoubi, S., Taghizadeh-Mehrjardi, R., Scholten, T., & Xu, M. (2022). Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates. Catena, 208,  105723. https://doi.org/10.1016/j.catena.2021.105723

  • Zhang, G. L., Liu, F., & Song, X. (2017). Recent progress and future prospect of digital soil mapping: A review. Journal of Integrative Agriculture, 16, 2871–2885. https://doi.org/10.1016/S2095-3119(17)61762-3

    Article  Google Scholar 

Download references

Funding

This research was funded by the University of Tehran and the College of Agriculture and Natural Resources under grant number 7104017/6/19.

Author information

Authors and Affiliations

Authors

Contributions

Maryam Osat and Ahmad Heidari did fieldwork and performed the primary data analysis. Maryam Osat and Shahrokh Fatehi analyzed the data and prepared digital soil maps. Maryam Osat wrote the main manuscript text and prepared all figures and tables. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Maryam Osat.

Ethics declarations

Declaration

All authors have read, understood, and complied as applicable with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osat, M., Heidari, A. & Fatehi, S. Enhancing the accuracy of digital soil mapping using the surface and subsurface soil characteristics as continuous diagnostic layers. Environ Monit Assess 196, 55 (2024). https://doi.org/10.1007/s10661-023-12088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12088-7

Keywords

Navigation