Skip to main content

Advertisement

Log in

Future precipitation and near surface air-temperature projection using CMIP6 models based on TOPSIS method: case study, Sistan-and-Baluchestan Province of Iran

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Based on surface air temperature and precipitation, the current study examines the climate fluctuations over Sistan-and-Baluchestan Province, Iran’s second-largest province. This area suffers from insufficient direct observations and a lack of climatic investigation. Three datasets were utilized including in situ data, gridded data (1984–2013), outputs of historical runs (during 1984–2013), and projections under the SSP5-8.5, SSP3-7.0, and SSP1-2.6 scenarios (in 2020–2049) of twenty-six Global Climate Models (GCMs) from the latest Coupled Model Intercomparison Project (CMIP6). The models’ performance has been evaluated and ranked using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) in Multi-Criteria Decision Making (MCDM) technique including eight metrics in both seasonal and annual scales. The surface air temperature showed an increasing trend in seasonal and annual scales during 1984–2013, while the monthly precipitation trend increased for September-October-November and decreased for the other seasons and annual scale during 1984–2013. The top-ranked models for simulating surface air temperature (precipitation) were CESM2 (GFDL-ESM4), IPSL-CM6A-LR (UKESM1-0-LL), ACCESS-CM2 (GFDL-ESM4), and MIROC-ES2L (MPI-ESM1-2-LR) models in DJF, MAM, JJA, and SON seasons, respectively, while ACCESS-CM2 (CNRM-CM6-1-HR) model outperformed others in annual scale. Bias-corrected outputs of the top-ranked CMIP6 GCMs showed an increasing trend for surface air temperature in all seasons (from a 0.7 K increase in December-January-February season under SSP3-7.0 scenario to a 2.5 K increase in June-July-August season under SSP5-8.5 scenario) for period 2020–2049, comparing with that in 1984–2013 period. Bias-corrected monthly precipitation projected by top-ranked CMIP6 GCMs indicated both increasing and decreasing trends depending on selected season and scenario. This varied from a 5 mm/month decrease within December-January-February season under SSP5-8.5 scenario to a 13 mm/month increase during the March-April-May season under SSP1-2.6 scenario in 2020-2050, comparing with that from previous years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

The data used in this research includes free data from CRU and CMIP6 GCMs. The related links have been included in the acknowledgement.

Code availability

Not applicable'

References

  • Ahmed, A., Suleiman, M., Abubakar, M. J., & Saleh, A. (2021). Impacts of climate change on agriculture in Senegal: A systematic review. Journal of Sustainability, Environment and Peace, 4(1), 30–38.

    Article  Google Scholar 

  • Anil, S., Manikanta, V., & Pallakury, A. R. (2021). Unravelling the influence of subjectivity on ranking of CMIP6 based climate models: A case study. International Journal of Climatology, 41(13), 5998–6016.

    Article  Google Scholar 

  • Baker, N. C., & Huang, H. P. (2014). A comparative study of precipitation and evaporation between CMIP3 and CMIP5 climate model ensembles in semiarid regions. Journal of Climate, 27(10), 3731–3749.

    Article  Google Scholar 

  • Barry, A. A., Caesar, J., Klein Tank, A. M. G., Aguilar, E., McSweeney, C., Cyrille, A. M., et al. (2018). West Africa climate extremes and climate change indices. International Journal of Climatology, 38, e921–e938.

    Article  Google Scholar 

  • Beine, M., Noy, I., & Parsons, C. (2021). Climate change, migration and voice. Climatic Change, 167(1), 1–27.

    Google Scholar 

  • Cardoso Pereira, S., Marta Almeida, M., Carvalho, A. C., & Rocha, A. (2020). Extreme precipitation events under climate change in the Iberian Peninsula. International Journal of Climatology, 40(2), 1255–1278.

    Article  Google Scholar 

  • Christidis, N., Mitchell, D., & Stott, P. A. (2019). Anthropogenic climate change and heat effects on health. International Journal of Climatology, 39(12), 4751–4768.

    Article  Google Scholar 

  • Collados-Lara, A. J., Pardo-Igúzquiza, E., Pulido-Velazquez, D., & Jiménez-Sánchez, J. (2018). Precipitation fields in an alpine Mediterranean catchment: Inversion of precipitation gradient with elevation or undercatch of snowfall? International Journal of Climatology, 38(9), 3565–3578.

    Article  Google Scholar 

  • Dehghani, M., Saghafian, B., Nasiri Saleh, F., Farokhnia, A., & Noori, R. (2014). Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation. International Journal of Climatology, 34(4), 1169–1180.

    Article  Google Scholar 

  • Donnelly, C., Greuell, W., Andersson, J., Gerten, D., Pisacane, G., Roudier, P., & Ludwig, F. (2017). Impacts of climate change on European hydrology at 1.5, 2 and 3_ mean global warming above preindustrial level. Climatic Change, 143(3–4), 13–26.

    Article  Google Scholar 

  • Duan, K., & Mei, Y. (2014). A comparison study of three statistical downscaling methods and their model-averaging ensemble for precipitation downscaling in China. Theoretical and Applied Climatology, 116(3-4), 707–719.

    Article  Google Scholar 

  • Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958.

    Article  Google Scholar 

  • Flynn, C. M., & Mauritsen, T. (2020). On the climate sensitivity and historical warming evolution in recent coupled model ensembles. Atmospheric Chemistry and Physics, 20(13), 7829–7842.

    Article  CAS  Google Scholar 

  • Gao, Y., Xiao, L., Chen, D., Xu, J., & Zhang, H. (2018). Comparison between past and future extreme precipitations simulated by global and regional climate models over the Tibetan Plateau. International Journal of Climatology, 38(3), 1285–1297.

    Article  Google Scholar 

  • Ghalami, V., Saghafian, B., & Raziei, T. (2021). Trend analysis of evapotranspiration over Iran based on NEX-GDDP high-resolution dataset. International Journal of Climatology, 41, E2073–E2096.

    Article  Google Scholar 

  • Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., et al. (2019). Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific Model Development, 12(4), 1443–1475.

    Article  CAS  Google Scholar 

  • Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. Journal of Hydrology, 377, 80–91.

    Article  Google Scholar 

  • Heinze, C., Eyring, V., Friedlingstein, P., Jones, C., Balkanski, Y., Collins, W., et al. (2019). ESD reviews: Climate feedbacks in the Earth system and prospects for their evaluation. Earth System Dynamics, 10(3), 379–452.

    Article  Google Scholar 

  • Homsi, R., Shiru, M. S., Shahid, S., Ismail, T., Harun, S. B., Al-Ansari, N., et al. (2020). Precipitation projection using a CMIP5 GCM ensemble model: A regional investigation of Syria. Engineering Applications of Computational Fluid Mechanics, 14(1), 90–106.

    Article  Google Scholar 

  • Hong, J., Javan, K., Shin, Y., & Park, J. S. (2021). Future projections and uncertainty assessment of precipitation extremes in Iran from the CMIP6 ensemble. Atmosphere, 12(8), 1052.

    Article  Google Scholar 

  • Huang, W., Ge, Q., Wang, H., & Dai, J. (2019). Effects of multiple climate change factors on the spring phenology of herbaceous plants in Inner Mongolia, China: Evidence from ground observation and controlled experiments. International Journal of Climatology, 39(13), 5140–5153.

    Article  Google Scholar 

  • Iyakaremye, V., Zeng, G., Yang, X., Zhang, G., Ullah, I., Gahigi, A., Vuguziga, F., Asfaw, T. G., & Ayugi, B. (2021). Increased high-temperature extremes and associated population exposure in Africa by the mid-21st century. Science of The Total Environment, 790, 148162.

    Article  CAS  Google Scholar 

  • Jiang, D., Tian, Z., & Lang, X. (2016). Reliability of climate models for China through the IPCC third to fifth assessment reports. International Journal of Climatology, 36(3), 1114–1133.

    Article  Google Scholar 

  • Jin, Z., Ge, F., Chen, Q., & Lin, Z. (2023). To what extent horizontal resolution improves the simulation of precipitation in CMIP6 HighResMIP models over Southwest China? Frontiers in Earth Science, 10, 1982.

    Article  Google Scholar 

  • Kaczan, D. J., & Orgill-Meyer, J. (2020). The impact of climate change on migration: A synthesis of recent empirical insights. Climatic Change, 158(3), 281–300.

    Article  Google Scholar 

  • Kamruzzaman, M., Shahid, S., Roy, D. K., Islam, A. T., Hwang, S., Cho, J., et al. (2022). Assessment of CMIP6 global climate models in reconstructing rainfall climatology of Bangladesh. International Journal of Climatology, 42(7), 3928–3953.

    Article  Google Scholar 

  • Katiraie-Boroujerdy, P. S., Akbari Asanjan, A., Chavoshian, A., Hsu, K. L., & Sorooshian, S. (2019). Assessment of seven CMIP5 model precipitation extremes over Iran based on a satellite-based climate data set. International Journal of Climatology, 39(8), 3505–3522.

    Article  Google Scholar 

  • Keellings, D. (2016). Evaluation of downscaled CMIP5 model skill in simulating daily maximum temperature over the southeastern United States. International Journal of Climatology, 36(12), 4172–4180.

    Article  Google Scholar 

  • Khadka, D., Babel, M. S., Abatan, A. A., & Collins, M. (2021). An evaluation of CMIP5 and CMIP6 climate models in simulating summer rainfall in the Southeast Asian monsoon domain. International Journal of Climatology, 42(2), 1181–1202.

    Article  Google Scholar 

  • Koutroulis, A. G., Grillakis, M. G., Tsanis, I. K., & Papadimitriou, L. (2016). Evaluation of precipitation and temperature simulation performance of the CMIP3 and CMIP5 historical experiments. Climate Dynamics, 47(5), 1881–1898.

    Article  Google Scholar 

  • Li, J., Liu, Z., Yao, Z., & Wang, R. (2019). Comprehensive assessment of Coupled Model Intercomparison Project Phase 5 global climate models using observed temperature and precipitation over mainland Southeast Asia. International Journal of Climatology, 39(10), 4139–4153.

    Article  Google Scholar 

  • Li, M., Wu, P., & Ma, Z. (2020). A comprehensive evaluation of soil moisture and soil temperature from third-generation atmospheric and land reanalysis data sets. International Journal of Climatology, 40(13), 5744–5766.

    Article  Google Scholar 

  • Liu, Z., Liu, Y., & Li, Y. (2019). Extended warm temperate zone and opportunities for cropping system change in the Loess Plateau of China. International Journal of Climatology, 39(2), 658–669.

    Article  Google Scholar 

  • Lu, K., Arshad, M., Ma, X., Ullah, I., Wang, J., & Shao, W. (2022). Evaluating observed and future spatiotemporal changes in precipitation and temperature across China based on CMIP6-GCMs. International Journal of Climatology, 42(15), 7703–7729.

    Article  Google Scholar 

  • Lun, Y., Liu, L., Cheng, L., Li, X., Li, H., & Xu, Z. (2021). Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. International Journal of Climatology, 41(7), 3994–4018.

    Article  Google Scholar 

  • Luo, N., Guo, Y., Chou, J., & Gao, Z. (2022). Added value of CMIP6 models over CMIP5 models in simulating the climatological precipitation extremes in China. International Journal of Climatology, 42(2), 1148–1164.

    Article  Google Scholar 

  • Mauritsen, T., & Roeckner, E. (2020). Tuning the MPI-ESM1. 2 global climate model to improve the match with instrumental record warming by lowering its climate sensitivity. Journal of Advances in Modeling Earth Systems, 12(5), e2019MS002037.

    Article  Google Scholar 

  • Mcmahon, T. A., Peel, M. C., & Karoly, D. J. (2015). Assessment of precipitation and temperature data from CMIP3 global climate models for hydrologic simulation. Hydrology and Earth System Sciences, 19(1), 361–377.

    Article  Google Scholar 

  • Miri, M., Samakosh, J. M., Raziei, T., Jalilian, A., & Mahmodi, M. (2021). Spatial and temporal variability of temperature in Iran for the twenty-first century foreseen by the CMIP5 GCM models. Pure and Applied Geophysics, 178(1), 169–184.

    Article  Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—a discussion of principles. Journal of Hydrology, 10(3), 282–290.

    Article  Google Scholar 

  • Nashwan, M. S., & Shahid, S. (2020). A novel framework for selecting general circulation models based on the spatial patterns of climate. International Journal of Climatology, 40(10), 4422–4443.

    Article  Google Scholar 

  • Ngoma, H., Wen, W., Ayugi, B., Babaousmail, H., Karim, R., & Ongoma, V. (2021). Evaluation of precipitation simulations in CMIP6 models over Uganda. International Journal of Climatology, 41(9), 4743–4768.

    Article  Google Scholar 

  • O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., et al. (2014). A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change, 122(3), 387–400.

    Article  Google Scholar 

  • O'Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., et al. (2016). The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461–3482.

    Article  Google Scholar 

  • Pegahfar, N. (2021). Climatic analysis of tropopause during the northwestern Indian Ocean tropical cyclones. Dynamics of Atmospheres and Oceans, 93, 101195.

    Article  Google Scholar 

  • Podineh, O., Delbari, M., Haghighatjou, P., & Amiri, M. (2015). Spatial analysis of precipitation with elevation and distance to sea (case study: Sistan-and-Baluchestan Province). Physical Geography Research Quarterly, 47(4), 607–636.

    Google Scholar 

  • Pörtner, H. O., Roberts, D., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., ... & Weyer, N. M. (2019). IPCC special report on the ocean and cryosphere in a changing climate. IPCC–Intergovernmental Panel on Climate Change, Geneva

  • Quispe-Ccalluari, C., Tam, J., Demarcq, H., Chamorro, A., Espinoza-Morriberón, D., Romero, C., et al. (2018). An index of coastal thermal effects of El Niño Southern Oscillation on the Peruvian Upwelling Ecosystem. International Journal of Climatology, 38(7), 3191–3201.

    Article  Google Scholar 

  • Raziei, T., Daneshkar Arasteh, P., Akhtari, R., & Saghafian, B. (2007). Investigation of meteorological droughts in the Sistan-and-Baluchestan province, Using the standardized precipitation index and Markov chain model. Iran-Water Resources Research, 3(1), 25–35.

    Google Scholar 

  • Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O’neill, B. C., Fujimori, S., et al. (2017). The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change, 42, 153–168.

    Article  Google Scholar 

  • Saligeh, M., Bareimanei, F., & Esmaeilnegad, M. (2008). Climatical regionalization on Sistan & Baluchestan Province. Geography and Development Iranian Journal, 6(12), 101–106.

    Google Scholar 

  • Samantaray, A. K., Ramadas, M., & Panda, R. K. (2021). Assessment of impacts of potential climate change on meteorological drought characteristics at regional scales. International Journal of Climatology, 41, E319–E341.

    Article  Google Scholar 

  • Sharafati, A., Nabaei, S., & Shahid, S. (2020). Spatial assessment of meteorological drought features over different climate regions in Iran. International Journal of Climatology, 40(3), 1864–1884.

    Article  Google Scholar 

  • Song, Y. H., Shahid, S., & Chung, E. S. (2022). Differences in multi-model ensembles of CMIP5 and CMIP6 projections for future droughts in South Korea. International Journal of Climatology, 42(5), 2688–2716.

    Article  Google Scholar 

  • Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498.

    Article  Google Scholar 

  • Ullah, I., Ma, X., Asfaw, T. G., Yin, J., Iyakaremye, V., Saleem, F., Xing, Y., Azam, K., & Syed, S. (2022). Projected changes in increased drought risks over South Asia under a warmer climate. Earths Future, 10(10), e2022EF002830.

    Article  Google Scholar 

  • Ullah, I., Ma, X., Yin, J., et al. (2023). Spatiotemporal characteristics of meteorological drought variability and trends (1981–2020) over South Asia and the associated large-scale circulation patterns. Climate Dynamics, 60, 2261–2284.

    Article  Google Scholar 

  • Ullah, I., Saleem, F., Iyakaremye, V., Yin, J., Ma, X., Syed, S., Hina, S., Asfaw, T. G., & Omer, A. (2022). Projected changes in socioeconomic exposure to heatwaves in South Asia under changing climate. Earths Future, 10(2), e2021EF002240.

    Article  Google Scholar 

  • Wang, L., Ranasinghe, R. W. M. R. J., Maskey, S., van Gelder, P. M., & Vrijling, J. K. (2016). Comparison of empirical statistical methods for downscaling daily climate projections from CMIP5 GCMs: A case study of the Huai River Basin, China. International Journal of Climatology, 36(1), 145–164.

    Article  Google Scholar 

  • Weedon, G. P., Balsamo, G., Bellouin, N., Gomes, S., Best, M. J., & Viterbo, P. (2014). The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resources Research, 50(9), 7505–7514.

    Article  Google Scholar 

  • Wen, S., Wang, Y., Su, B., Gao, C., Chen, X., Jiang, T., et al. (2019). Estimation of economic losses from tropical cyclones in China at 1.5° C and 2.0° C warming using the regional climate model COSMO-CLM. International Journal of Climatology, 39(2), 724–737.

    Article  Google Scholar 

  • Xin, X., Wu, T., Zhang, J., Yao, J., & Fang, Y. (2020). Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. International Journal of Climatology, 40(15), 6423–6440.

    Article  Google Scholar 

  • Xu, K., Yang, D., Yang, H., Li, Z., Qin, Y., & Shen, Y. (2015). Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective. Journal of Hydrology, 526, 253–264.

    Article  Google Scholar 

  • Zamani, R., & Berndtsson, R. (2019). Evaluation of CMIP5 models for west and southwest Iran using TOPSIS-based method. Theoretical and Applied Climatology, 137(1–2), 533–543.

    Article  Google Scholar 

  • Zamani, Y., Hasemi Monfared, S. A., Amidianpour, M., & Azhdari Moghaddam, M. (2019). The changes in sectors demanding water resources on the basis of climate change and uncertainty. The International Journal of Climate Change: Impacts and Responses, 11(4), 15.

    Google Scholar 

  • Zamani, Y., Monfared, S. A. H., & Hamidianpour, M. (2020). A comparison of CMIP6 and CMIP5 projections for precipitation to observational data: The case of Northeastern Iran. Theoretical and Applied Climatology, 142(3), 1613–1623.

    Article  Google Scholar 

  • Zare Abianeh, H., Sabziparvar, A., Marofi, S., Ghiyami, F., Mirmasoud, S., & Kazemi, A. (2015). Analyzing and monitoring the meteorological droughts in the region of Sistan-and-Baluchestan. Journal of Environmental Science and Technology, 17(1), 49–61.

    Google Scholar 

  • Zarrin, A., & Dadashi Roudbari, A. (2020). Projection the long-term outlook Iran future temperature based on the output of the coupled model intercomparison project phase 6 (CMIP6). Journal of the Earth and Space Physics, 46(3), 583–602.

    Google Scholar 

  • Zarrin, A., & Dasdashi-Roudbari, A. (2021a). Projection of future extreme precipitation in Iran based on CMIP6 multi-model ensemble. Theoretical and Applied Climatology, 144(1), 643–660.

    Article  Google Scholar 

  • Zarrin, A., & Dasdashi-Roudbari, A. (2021b). Projected consecutive dry and wet days in Iran based on CMIP6 bias-corrected multi-model ensemble. Journal of the Earth and Space Physics, 47(3), 561–578.

    Google Scholar 

  • Zelinka, M. D., Myers, T. A., McCoy, D. T., Po-Chedley, S., Caldwell, P. M., Ceppi, P., et al. (2020). Causes of higher climate sensitivity in CMIP6 models. Geophysical Research Letters, 47(1), e2019GL085782.

  • Zhao, Z., Luo, Y., & Huang, J. (2020). Will global warming continue in the next 20 years? Climate Change Research, 5(16), 652–656.

    Google Scholar 

Download references

Acknowledgements

In this study, the CMIP6 GCMs outputs (from https://cds.climate.copernicus.eu/website) produced by climate modelling groups from the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, were used. In addition, the CRU data have been downloaded from https://crudata.uea.ac.uk/cru/data/hrg/.

Author information

Authors and Affiliations

Authors

Contributions

All files, including manuscript, figures and tables have been prepared by Nafiseh Pegahfar.

Corresponding author

Correspondence to Nafiseh Pegahfar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Nafiseh Pegahfar approves that she does the results presented in this manuscript.

Consent to participate

Nafiseh Pegahfar prepared this manuscript, agreed with the content, and gave explicit consent to submit that.

Consent for publication

Nafiseh Pegahfar consents to publish her results in this journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 74 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pegahfar, N. Future precipitation and near surface air-temperature projection using CMIP6 models based on TOPSIS method: case study, Sistan-and-Baluchestan Province of Iran. Environ Monit Assess 195, 1548 (2023). https://doi.org/10.1007/s10661-023-12084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-12084-x

Keywords

Navigation