Skip to main content
Log in

Ingestion exposure of public to natural radionuclides and committed effective dose and cancer risk through tuber crops cultivated in Ebonyi State, Nigeria

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Internal exposure of public to radiation arising from ingestion of natural radionuclides in tuber crops of Ebonyi State origin was investigated in this study. Committed effective doses and lifetime cancer risk of 40K, 226Ra, and 232Th in cassava, cocoyam, water yam, and white yam were calculated. The average activity concentrations of 40K, 226Ra, and 232Th determined by gamma spectrometric Na (TI) detector were, respectively, 199.15 ± 23.51, 77.57 ± 7.98, and 118.20 ± 10.72 Bq/kg in cassava; 146.62 ± 40.69, 43.42 ± 7.63, and 75.61 ± 2.89 Bq/kg in cocoyam; 162.81 ± 20.43, 63.17 ± 11.36, and 81.50 ± 10.27 Bq/kg in water yam; and 184.50 ± 20.22, 80.23 ± 10.93, and 116.29 ± 5.93 Bq/kg in white yam. The total committed effective dose via ingestion aligned in this order of cassava (7.05 mSv/year) > white yam (4.38 mSv/year) > water yam (0.42 mSv/year) > cocoyam (0.21 mSv/year) with overall average dose of 3.12 mSv/year. The values of dose were higher than world average of 0.29 mSv/year given by United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The lifetime cancer risk values were above tolerance level of >10−4 prescribed by United States Environmental Protection Agency (USEPA), suggesting probable evolvement of radiogenic cancer morbidity. The data presented in this study contributes to baseline information on radiological characteristics of tuber crops in Ebonyi, which would be valuable to WHO/FAO food safety policy in Nigeria and rest of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets and other relevant materials generated in the course of the study can be made available by the corresponding author upon reasonable request.

References

  • Abojassim, A. A., Al-Gazaly, H. H., & Kadhim, S. H. (2014). Estimated the radiation hazard indices and ingestion effective dose in wheat flour samples of Iraq markets. The International Journal of Food Contamination, 1, 6. https://doi.org/10.1186/s40550-014-0006-7

    Article  Google Scholar 

  • Akhter, P., Rahman, K., Orfi, S. D., & Ahmad, N. (2007). Radiological impact of dietary intakes of naturally occurring radionuclides on Pakistani adults. Food and Chemical Toxicology, 45, 272–277. https://doi.org/10.1016/j.fct.2006.08.006

    Article  CAS  Google Scholar 

  • Alrefae, T., Nageswaran, T. N., Demir, N. S., Khandaker, M. U., Bradley, D. A., Alkhorayef, M., & Alzimami, K. S. (2018). Committed effective dose to the Kuwaiti population via the dietary intake of red meat. Results in Physics, 10, 827–831. https://doi.org/10.1016/j.rinp.2018.07.030

    Article  Google Scholar 

  • Alsaffar, M. S., Jaafar, M. S., Kabir, N. A., & Ahmad, N. (2015). Distribution of 226Ra, 232Th, and 40K in rice plant components and physico-chemical effects of soil on their transportation to grains. Journal of Radiation Research and Applied Science, 8, 300–310. https://doi.org/10.1016/j.jrras.2015.04.002

    Article  Google Scholar 

  • Altamemi, R. A. A., Turhan, S., & Kurnaz, A. (2021). Natural and anthropogenic radioactivity in some vegetables and fruits commonly consumed in the Western Black Sea region of Turkey. Radiochimica Acta, 109(12), 935–942. https://doi.org/10.1515/ract-2021-1100

    Article  CAS  Google Scholar 

  • Arogunjo, A. M., Hollriegl, V., Giussani, A., Leopold, K., Gerstmann, U., Veronese, I., & Oeh, U. (2009). Uranium and thorium in soils, mineral sands, water and food samples in a tin mining area in Nigeria with elevated activity. Journal of Environmental Radioactivity, 100, 232–240. https://doi.org/10.1016/j.jenvrad.2008.12.004

    Article  CAS  Google Scholar 

  • Asaduzzaman, K., Khandaker, M. U., Amin, Y. M., Bradley, D. A., Mahat, R. H., & Nor, R. M. (2014). Soil-to-root vegetable transfer factors for 226Ra, 232Th, 40K, and 88Y in Malaysia. Journal of Environmental Radioactivity, 135, 120–127. https://doi.org/10.1016/j.jenvrad.2014.04.009

    Article  CAS  Google Scholar 

  • Asaduzzaman, K., Khandaker, M. U., Amin, Y. M., & Mahat, R. (2015). Uptake and distribution of natural radioactivity in rice from soil in north and west part of peninsular Malaysia for the estimation of ingestion dose to man. Annals of Nuclear Energy, 76, 85–93. https://doi.org/10.1016/j.anucene.2014.09.036

    Article  CAS  Google Scholar 

  • Avwiri, G. O., & Agbalagba, E. O. (2013). Assessment of natural radioactivity, associated radiological health hazards indices and soil-to-crop transfer factors in cultivated area around a fertilizer factory in Onne, Nigeria. Environment and Earth Science, 71(4), 1541–1549. https://doi.org/10.1007/s12665-013-2560-3

    Article  CAS  Google Scholar 

  • Aydın, M. F., Söğüt, Ö., & Kara, A. (2022). Radiological health risks assessment of vegetable and fruit samples taken from the provincial borders of Adıyaman in the south-eastern Anatolia region, in Turkey. Journal of Radiation Research and Applied Science, 15(4), 100491. https://doi.org/10.1016/j.jrras.2022.100491

    Article  CAS  Google Scholar 

  • Bilgici Cengiz, G., & Caglar, I. (2022). Evaluation of lifetime cancer risk arising from natural radioactivity in foods frequently consumed by people in Eastern of Turkey. Journal of Radioanalytical and Nuclear Chemistry, 331, 1847–1857. https://doi.org/10.1007/s10967-022-08248-7

    Article  CAS  Google Scholar 

  • Bramki, A., Ramdhane, M., & Benrachi, A. (2018). Natural radioelement concentrations in fertilizers and the soil of the Mila region of Algeria. Journal of Radiation Research and Applied Science, 11(1), 49–55. https://doi.org/10.1016/j.jrras.2017.08.002

    Article  CAS  Google Scholar 

  • Cao, Y., Zhao, Z., Zou, H., Lou, X., Wang, P., Gao, X., Xu, Q., Zhao, D., Zhang, M., Yu, S., Lai, Z., Zhao, Y., Xuan, Z., & Ren, H. (2022). Radioactivity in water and food from Hangzhou, China in the past decade: Levels, sources, exposure and human health risk assessment. Environmental Technology and Innovation, 28, 102581. https://doi.org/10.1016/j.eti.2022.102581

    Article  CAS  Google Scholar 

  • Central Bank of Nigeria (2016). 2016 Statistical Bulletin of the Central Bank of Nigeria, Abuja, Nigeria.

  • Chakraborty, S. R., Azim, R., Rahman, A. R., & Sarker, R. (2013). Radioactivity concentrations in soil and transfer factors of radionuclides from soil to grass and plants in the Chittagong city of Bangladesh. Journal of Physical Science, 24, 95–113.

    CAS  Google Scholar 

  • Darko, G., Faanu, A., Akoto, O., Acheampong, A., Goode, E. J., & Gyamfi, O. (2015). Distribution of natural and artificial radioactivity in soils, water and tuber crops. Environmental Monitoring and Assessment, 187, 339. https://doi.org/10.1007/s10661-015-4580-9

    Article  CAS  Google Scholar 

  • Fakhri, Y., Sarafraz, M., Pilevar, Z., Daraei, H., Rahimizadeh, A., Kazemi, S., Khedher, K. M., Thai, V. N., Ba, L. H., & Khaneghah, A. M. (2022). The concentration and health risk assessment of radionuclides in the muscle of tuna fish: A worldwide systematic review and meta-analysis. Chemosphere, 289, 133149. https://doi.org/10.1016/j.chemosphere.2021.133149

    Article  CAS  Google Scholar 

  • Fasanmi, P. O., Orosun, M. M., Olukotun, S. F., Isinkaye, M. O., Sejlo, G. T., Tchokossa, P., & Adegbehingbe, O. O. (2021). Dose and health risk assessment due to natural radioactivity in root and tuber crops from selected local government areas in Ekiti State, Southwestern Nigeria. Journal of Radiation and Nuclear Applications, 6(2), 129–134. https://doi.org/10.18576/jrna/060206

    Article  Google Scholar 

  • Gbadamosi, M. R., Afolabi, T. A., Ogunneye, A. L., Ogunbanjo, O. O., Omotola, E. O., Kadiri, T. M., Akinsipo, O. B., & Jegede, D. O. (2018). Distribution of radionuclides and heavy metals in the bituminous sand deposit in Ogun State, Nigeria — A multi-dimensional pollution, health and radiological risk assessment. Journal of Geochemical Exploration, 190, 187–199. https://doi.org/10.1016/j.gexplo.2018.03.006

    Article  CAS  Google Scholar 

  • Hashim, A. K., & Najam, L. A. (2015). Radium and uranium concentrations measurements in vegetables samples of Iraq. Detection, 3, 21–28. https://doi.org/10.4336/detection.2015.34004

    Article  CAS  Google Scholar 

  • Hassan, Y. M., Zaid, H. M., Guan, B. H., Khandaker, M. U., Bradley, D. A., Sulieman, A., & Latif, S. A. (2021). Radioactivity in staple foodstuffs and concomitant dose to the population of Jigawa state, Nigeria. Radiation Physics and Chemistry, 178, 108945. https://doi.org/10.1016/j.radphyschem.2020.108945

    Article  CAS  Google Scholar 

  • IAEA (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. International Atomic Energy Agency (IAEA) Technical reports series, no. 472, Vienna. Accessed from https://www.iaea.org/publications/8201/handbook-of-parameter-values-for-the-prediction-of-radionuclide-transfer-in-terrestrial-and-freshwater-environments. Accessed 24 May 2023

  • IAEA (2014) Radiation protection and safety of radiation sources: International basic safety standards. International Atomic Energy Agency (IAEA) safety standards series No. GSR Part 3, Vienna, Australia. Also available on http://www.pub.iaea.org/MTCD/publications/publications.asp

  • ICRP (1996) Age-dependent doses to members of the public from intake of radionuclides: Part 5, Compilation of ingestion and inhalation dose coefficients, 72 vols. International Commission on Radiological Protection (ICRP) Publication, 1996.

  • ICRP. (2007). The 2007 Recommendations of the International Commission on Radiological Protection. In Annals of the ICRP Publication (Vol. 103, pp. 2–4). Elsevier.

    Google Scholar 

  • Jibiri, N. N., & Eke, B. C. (2022). Radionuclide contents in soil, sediments and food samples, and incidences of cancer in oil producing localities in Imo State south-east Nigeria. Journal of Radiation Research and Applied Science, 15, 90–97. https://doi.org/10.1016/j.jrras.2022.05.002

    Article  CAS  Google Scholar 

  • Jibiri, N. N., Farai, I. P., & Alausa, S. K. (2007a). Estimation of annual effective dose due to natural radioactive elements in ingestion of foodstuffs in tin mining area of Jos Plateau, Nigeria. Journal of Environmental Radioactivity, 94(1), 31–40. https://doi.org/10.1016/j.jenvrad.2006.12.011

    Article  CAS  Google Scholar 

  • Jibiri, N. N., Farai, I. P., & Alausa, S. K. (2007b). Activity concentrations of 226Ra, 228Th, and 40K, in different food crops from a high background radiation area in Bitsichi, Jos Plateau, Nigeria. Radiation and Environmental Biophysics, 46, 53–59. https://doi.org/10.1007/s00411-006-0085-9

    Article  CAS  Google Scholar 

  • Jibiri, N. N., & Okusanya, A. A. (2008). Radionuclide contents in food products from domestic and imported sources in Nigeria. Journal of Radiological Protection, 28, 405–413. https://doi.org/10.1088/0952-4746/28/3/N02

    Article  CAS  Google Scholar 

  • Karunakara, N., Rao, C., Ujwal, P., Yashodhara, I., Kumara, S., & Ravi, P. M. (2013). Soil to rice transfer factors for 226Ra, 228Ra, 210Pb, 40K and 137Cs: a study on rice grown in India. Journal of Environmental Radioactivity, 118, 80–92. https://doi.org/10.1016/j.jenvrad.2012.11.002

    Article  CAS  Google Scholar 

  • Khandaker, M. U., Nasir, N. L. M., Asaduzzaman, K., Olatunji, M. A., Amin, Y. M., Kassim, H. A., Bradley, D. A., Jojo, P. J., & Alrefae, T. (2016). Evaluation of radionuclides transfer from soil-to-edible flora and estimation of radiological dose to the Malaysian populace. Chemosphere, 154, 528–536. https://doi.org/10.1016/j.chemosphere.2016.03.121

    Article  CAS  Google Scholar 

  • Khandaker, M. U., Zainuddin, N. K., Bradley, D. A., Faruque, M. R. I., Almasoud, F. I., Sayyed, M. I., Sulieman, A., & Jojo, P. J. (2020). Radiation dose to Malaysian populace via the consumption of roasted ground and instant coffee. Radiation Physics and Chemistry, 173, 108886. https://doi.org/10.1016/j.radphyschem.2020.108886

    Article  CAS  Google Scholar 

  • Küçükönder, E., Gümbür, S., Söğüt, Ö., & Doğru, M. (2023). Radioactivity amounts, annual effective dose rate, and lifetime cancer risk estimation of some vegetable and fruit samples cultivated in Kahramanmaraş. Environmental Monitoring and Assessment, 195, 475. https://doi.org/10.1007/s10661-023-11098-9

    Article  CAS  Google Scholar 

  • Lopes, J. M., Garcêz, R. W. D., Silva, L. B., Silva, R. C., Domingues, A. M., Silva, A. X., & Dam, R. S. F. (2020). Committed effective dose due to consumption of fruits and vegetables peels: Analysis on cancer risk increase. Radiation Physics and Chemistry, 169, 108243. https://doi.org/10.1016/j.radphyschem.2019.03.047

    Article  CAS  Google Scholar 

  • Nahar, A., Asaduzzaman, K., Islam, M. M., Rahman Md, M., & Begum, M. (2018). Assessment of natural radioactivity in rice and their associated population dose estimation. Radiation Effects and Defects in Solids, 173(11-12), 1105–1114. https://doi.org/10.1080/10420150.2018.1542696

    Article  CAS  Google Scholar 

  • Nduka, J. K., Umeh, T. C., Kelle, H. I., Ozoagu, P. C., & Okafor, P. C. (2022). Health risk assessment of radiation dose of background radionuclides in quarry soil and uptake by plants in Ezillo-Ishiagu in Ebonyi South-Eastern Nigeria. Case Studies in Chemical and Environmental Engineering, 6, 100269. https://doi.org/10.1016/j.cscee.2022.100269

    Article  CAS  Google Scholar 

  • Obasi, I. A., Ogwah, C., Selemo, A. O. I., Afukwa, J. N., & Chukwu, C. G. (2020). In situ measurement of radionuclide concentrations (238U, 40K and 232Th) in middle Cretaceous rocks in Abakaliki-Ishiagu areas, southeastern Nigeria. Arabian Journal of Geosciences, 13, 374. https://doi.org/10.1007/s12517-020-05360-4

    Article  CAS  Google Scholar 

  • Obiora, S. C., Chukwu, A., Toteu, S. F., & Davies, T. C. (2016). Assessment of heavy metal contamination in soils around lead (Pb)-zinc (Zn) mining areas in Enyigba, Southeastern Nigeria. Journal of the Geological Society of India, 87, 453–462.

    Article  CAS  Google Scholar 

  • Obiora, S. C., & Umeji, A. C. (2004). Petrographic evidence for regional burial metamorphism of the sedimentary rocks in the lower Benue Rift. Journal of African Earth Sciences, 38, 269–277. https://doi.org/10.1016/j.jafrearsci.2004.01.001

    Article  CAS  Google Scholar 

  • Ofomola, M. O., Ugbede, F. O., & Anomohanran, O. (2023). Environmental risk assessment of background radiation, natural radioactivity and toxic elements in rocks and soils of Nkalagu quarry, Southeastern Nigeria. Journal of Hazardous Materials Advances, 10, 100288. https://doi.org/10.1016/j.hazadv.2023.100288

    Article  CAS  Google Scholar 

  • Okogbue, C. O., & Nweke, M. (2018). The 226Ra, 232Th and 40K contents in the Abakaliki baked shale construction materials and their potential radiological risk to public health, southeastern Nigeria. Journal of Environmental Geology, 2(1), 13–19.

    Article  Google Scholar 

  • Onyeneke, R. U., Amaadi, M. U., & Njoku, C. L. (2022). Climate change adaptation strategies by rice processors in Ebonyi State, Nigeria. Journal of Landscape Ecology, 41(3), 283–290. https://doi.org/10.2478/eko-2022-0029

    Article  Google Scholar 

  • Paiva, A. K. S., Pereira, W. S., Lopes, J. M., Silva, L. B., Carmo, A. S., Tarre, R. M., Charles-Pierre, M., Thalhofer, J. L., & Silva, A. X. (2022). Intake of natural radionuclides present in organic and conventional foods: radiological aspects. Journal of Radioanalytical and Nuclear Chemistry, 331, 903–911. https://doi.org/10.1007/s10967-021-08162-4

    Article  CAS  Google Scholar 

  • Pereira, W. S., Lopes, J. M., Kelecom, A., Garcez, R. W. D., Silva, A. S., Dam, R. S. F., & Paiva, A. K. S. (2021). Lifetime cancer risk increase due to consumption of some foods from a High Background Radiation Area. Applied Radiation and Isotopes, 176, 109855. https://doi.org/10.1016/j.apradiso.2021.109855

    Article  CAS  Google Scholar 

  • Pietrzak-Flis, Z., Rosiak, L., Suplinska, M., Chrzanowski, E., & Dembinska, S. (2001). Daily intakes of 238U, 234U, 228Ra, 230Th, 228Th and 226Ra in the adult population of central Poland. The Science of the Total Environment, 273(1–3), 163–169. https://doi.org/10.1016/S0048-9697(00)00849-4

    Article  CAS  Google Scholar 

  • Rosa, M. M. L., Maihara, V. A., Taddei, M. H. T., Cheberle, L. T. V., Avegliano, R. P., & Silva, P. S. C. (2022). The use of total diet study for determination of natural radionuclides in foods of a high background radiation area. Journal of Environmental Radioactivity, 242, 106793. https://doi.org/10.1016/j.jenvrad.2021.106793

    Article  CAS  Google Scholar 

  • Sahoo, S. K., Zunic, Z. S., Kritsananuwat, R., Zagrodzki, P., Bossew, P., Veselinovic, N., Mishra, S., Yonehara, H., & Tokonami, S. (2015). Distribution of uranium, thorium and some stable trace and toxic elements in human hair and nails in Niska Banja Town, a high natural background radiation area of Serbia (Balkan Region, South-East Europe). Journal of Environmental Radioactivity, 145, 66–77. https://doi.org/10.1016/j.jenvrad.2015.03.020

    Article  CAS  Google Scholar 

  • Sarap, N. B., Nikolić, J. D. K., Trifković, J. D., & Janković, M. M. (2020). Assessment of radioactivity contribution and transfer characteristics of natural radionuclides in agroecosystem. Journal of Radioanalytical and Nuclear Chemistry, 323, 805–815. https://doi.org/10.1007/s10967-019-06986-9

    Article  CAS  Google Scholar 

  • Sarker, M. S. D., Rahman, R., Siraz, M. M. M., Khandaker, M. U., & Yeasmin, S. (2021). The presence of primordial radionuclides in powdered milk and estimation of the concomitant ingestion dose. Radiation Physics and Chemistry, 188, 109597. https://doi.org/10.1016/j.radphyschem.2021.109597

    Article  CAS  Google Scholar 

  • Silva, L. B., Lopes, J. M., Pereira, W. S., Garcez, R. W. D., Silva, A. X., & Talhofer, J. L. (2021). Committed effective dose and lifetime cancer risk due to ingestion of natural radionuclides in grains grown in an area of high background radiation. Applied Radiation and Isotopes, 172, 109656. https://doi.org/10.1016/j.apradiso.2021.109656

    Article  CAS  Google Scholar 

  • Tchokossa, P., Olomo, J. B., Balogun, F. A., & Adesanmi, C. A. (2013). Assessment of radioactivity contents of food in the oil and gas producing areas in Delta State, Nigeria. International Journal of Scientific and Technology, 3(4), 245–250.

    Google Scholar 

  • Thien, B. N., Ba, V. N., Vy, N. T. T., & Loan, T. T. H. (2020). Estimation of the soil to plant transfer factor and the annual organ equivalent dose due to ingestion of food crops in Ho Chi Minh city, Vietnam. Chemosphere, 259, 127432. https://doi.org/10.1016/j.chemosphere.2020.127432

    Article  CAS  Google Scholar 

  • Ugbede, F. O. (2018). Measurement of background ionizing radiation exposure levels in selected farms in communities of Ishielu LGA, Ebonyi State, Nigeria. Journal of Applied Sciences and Environmental Management, 22(9), 1427–1432. https://doi.org/10.4314/jasem.v22i9.11

    Article  CAS  Google Scholar 

  • Ugbede, F. O. (2022). Natural radioactivity and committed ingestion effective dose in freshly cultivated rice in some parts of Ebonyi state, Nigeria. Chemistry Africa, 5(3), 703–713. https://doi.org/10.1007/s42250-022-00329-0

    Article  CAS  Google Scholar 

  • Ugbede, F. O., Aduo, B. C., Ogbonna, O. N., & Ekoh, C. O. (2020). Natural radionuclides, heavy metals and health risk assessment in surface water of Nkalagu river dam with statistical analysis. Scientific African, 8, e00439. https://doi.org/10.1016/j.sciaf.2020.e00439

    Article  Google Scholar 

  • Ugbede, F. O., & Akpolile, A. F. (2020). Assessment of natural radioactivity in potato and the health risk associated with its consumption in Enugu, Nigeria. Nigerian Journal of Science and Environment, 18(1), 77–84.

    Google Scholar 

  • Ugbede, F. O., Akpolile, A. F., Oladele, B. B., Agbajor, G. K., & Popoola, F. A. (2022a). Ingestion exposure and committed health risk of natural radioactivity and toxic metals in local rice sold in Enugu urban markets. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2022.2036983

  • Ugbede, F. O., Osahon, O. D., & Akpolile, A. F. (2022b). Natural radioactivity levels of 238U, 232Th and 40K and radiological risk assessment in paddy soil of Ezillo rice fields in Ebonyi State, Nigeria. Environmental Forensics, 23, 32–46. https://doi.org/10.1080/15275922.2021.1892881

    Article  CAS  Google Scholar 

  • Ugbede, F. O., & Osahon, O. D. (2021). Soil-to-plant transfer factors of 238U and 232Th in rice from Ezillo paddy fields, Ebonyi State, Nigeria. Journal of Environmental Radioactivity, 233, 106606. https://doi.org/10.1016/j.jenvrad.2021.106606

    Article  CAS  Google Scholar 

  • Ugbede, F. O., Osahon, O. D., & Agbalagba, E. O. (2021). Radiological risk assessment of 238U, 232Th and 40K in soil and their uptake by rice cultivated in CAS paddy environment of Abakaliki, Nigeria. Chemistry Africa, 4(3), 691–701. https://doi.org/10.1007/s42250-021-00244-w

    Article  CAS  Google Scholar 

  • UNSCEAR. (2000). Exposures from natural radiation sources. United Nations Scientific Committee on the effect of Atomic Radiation Report to the General Assembly, with Scientific Annexes. United Nations.

    Google Scholar 

  • USEPA (1999) Cancer risk coefficients for environmental exposure to radionuclides. US Environmental Protection Agency (US EPA), Office of Radiation and Indoor Air Washington, DC 20460. https://www.epa.gov/sites/production/files/2015-05/documents/402-r-99-001.pdf.

  • Van, H. D., Nguyen, T. D., Peka, A., Hegedus, M., Csordas, A., & Kovacs, T. (2020). Study of soil to plant transfer factors of 226Ra, 232Th, 40K and 137Cs in Vietnamese crops. Journal of Environmental Radioactivity, 223–224, 106416. https://doi.org/10.1016/j.jenvrad.2020.106416

    Article  CAS  Google Scholar 

  • Vandenhove, H., Olyslaegers, G., Sanzharova, N., Shubina, O., Reed, E., Shang, Z., & Velasco, H. (2009). Proposal for new best estimates of the soil-to-plant transfer factor of U, Th, Ra, Pb and Po. Journal of Environmental Radioactivity, 100, 721–732. https://doi.org/10.1016/j.jenvrad.2008.10.014

    Article  CAS  Google Scholar 

  • Wei, Y., Jin, L., Li, Z., Liu, J., Wang, L., Pi, X., Yin, S., Wang, C., & Ren, A. (2019). Levels of uranium and thorium in maternal scalp hair and risk of orofacial clefts in offspring. Journal of Environmental Radioactivity, 204, 125–131. https://doi.org/10.1016/j.jenvrad.2019.04.007

    Article  CAS  Google Scholar 

  • Wufuer, R., Song, W., Zhang, D., Pan, X., & Gadd, G. M. (2018). A survey of uranium levels in urine and hair of people living in a coal mining area in Yili, Xinjiang, China. Journal of Environmental Radioactivity, 189, 168–174. https://doi.org/10.1016/j.jenvrad.2018.04.009

    Article  CAS  Google Scholar 

  • Yadav, P., Garg, V. K., Singh, B., Pulhani, V., & Mor, S. (2018). Transfer factors and effective dose evaluation due to natural radioactivity in staple food grains from the vicinity of proposed nuclear power plant. Exposure and Health, 10(1), 27. https://doi.org/10.1007/s12403-017-0243-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the management of Center for Energy Research and Training (CERT), Ahmadu Bello University, Zaria, for allowing us to carry out the radioactivity measurement in their laboratory at a reduced cost.

Author information

Authors and Affiliations

Authors

Contributions

Fredrick Oghenebrorie Ugbede: conceptualization and proposal, study plan design, field sampling, lab analysis, and initial drafting. Godwin Kparobo Agbajor: result presentation, data interpretation, discussion, and initial drafting. Anita Franklin Akpolile: lab analysis, data interpretation, and initial drafting. Felix Adegoke Popoola: validation, supervision, conclusion and manuscript editing. Okechukwu N.N. Okoye: validation, supervision, and editing. Eloho Augustina Akpobasahan: data curation, statistical analysis and validation. Margaret Adebimpe Umeche: statistical analysis and manuscript formatting. All authors took part in the final revision of the manuscript and approved it for submission.

Corresponding author

Correspondence to Fredrick Oghenebrorie Ugbede.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 30 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugbede, F.O., Agbajor, G.K., Akpolile, A.F. et al. Ingestion exposure of public to natural radionuclides and committed effective dose and cancer risk through tuber crops cultivated in Ebonyi State, Nigeria. Environ Monit Assess 195, 1385 (2023). https://doi.org/10.1007/s10661-023-11992-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11992-2

Keywords

Navigation