Skip to main content
Log in

Analytical application of flower-shaped nickel nanomaterial for the preconcentration of manganese in domestic wastewater samples

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, detection sensitivity of the conventional flame atomic absorption spectrophotometer (FAAS) for the determination of manganese (Mn2+) was enhanced by employing a preconcentration method from wastewater samples. Flower-shaped Ni(OH)2 nanomaterials were synthesized and used as sorbent material in preconcentration procedure. With the aim of attaining optimum experimental conditions, effective parameters of extraction method were optimized and these included pH of buffer solution, desorption solvent concentration and volume, mixing type and period, nanoflower amount, and sample volume. The detection limit of the optimized method was determined to be 2.2 μg L−1, and this correlated to about 41-fold enhancement in detection power relative to direct FAAS measurement. Domestic wastewater was used to test the feasibility of the proposed method to real samples by performing spike recovery experiments. The wastewater sample was spiked at four different concentrations of manganese, and the percent recoveries determined were in the range of 95–120%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data will be available upon reasonable request

References

  • Adout, A., Hawlena, D., Maman, R., Paz-Tal, O., & Karpas, Z. (2007). Determination of trace elements in pigeon and raven feathers by ICPMS. International Journal of Mass Spectrometry, 267(1), 109–116. https://doi.org/10.1016/j.ijms.2007.02.022

    Article  CAS  Google Scholar 

  • Alghanmi, R. M. (2012). ICP-OES determination of trace metal ions after preconcentration using silica gel modified with 1, 2-dihydroxyanthraquinone. E-Journal of Chemistry, 9(2), 1007–1016.

    Article  CAS  Google Scholar 

  • Altundag, H., & Tuzen, M. (2011). Comparison of dry, wet and microwave digestion methods for the multi element determination in some dried fruit samples by ICP-OES. Food and Chemical Toxicology, 49(11), 2800–2807. https://doi.org/10.1016/j.fct.2011.07.064

    Article  CAS  Google Scholar 

  • Amini, A., Khajeh, M., Oveisi, A. R., Daliran, S., Ghaffari-Moghaddam, M., & Delarami, H. S. (2021). A porous multifunctional and magnetic layered graphene oxide/3D mesoporous MOF nanocomposite for rapid adsorption of uranium(VI) from aqueous solutions. Journal of Industrial and Engineering Chemistry, 93, 322–332. https://doi.org/10.1016/j.jiec.2020.10.008

    Article  CAS  Google Scholar 

  • Apostoli, P., Porru, S., Minoia, C., & Ronchi, A. (1992). Determination of manganese in biological fluids BY ZEEMAN GFAAS (C. MINOIA & S. B. T.-A. of Z. G. F. A. A. S. in the C. L. and in T. CAROLI (eds.); pp. 409–443). Pergamon. https://doi.org/10.1016/B978-0-08-041019-7.50022-4

  • Arı, B., Bakırdere, S., & Ataman, O. Y. (2020). Development of sensitive analytical methods for the determination of thallium at trace levels by slotted quartz tube flame atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 171, 105937.

    Article  Google Scholar 

  • Aydin, E. S., Zaman, B. T., Serbest, H., Kapukiran, F., Turak, F., & Bakirdere, S. (2022). Plastic sieve equipped two-syringe assisted magnetic colloidal gel for dispersive solid-phase extraction of manganese in tea samples. Journal of Food Composition and Analysis, 114, 104833. https://doi.org/10.1016/j.jfca.2022.104833

    Article  CAS  Google Scholar 

  • Büyüktiryaki, S., Keçili, R., & Hussain, C. M. (2020). Functionalized nanomaterials in dispersive solid phase extraction: Advances & prospects. In TrAC - Trends in Analytical Chemistry (Vol. 127, p. 115893). Elsevier B.V. https://doi.org/10.1016/j.trac.2020.115893

    Chapter  Google Scholar 

  • Chen, P., Bornhorst, J., & Aschner, M. A. (2019). Manganese metabolism in humans. In Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe 23(711), 1655–1679.

  • Cheng, Z., Xu, J., Zhong, H., Li, D., Zhu, P., & Yang, Y. (2010). A facile and novel synthetic route to Ni(OH)2 nanoflowers. Superlattices and Microstructures, 48(2), 154–161. https://doi.org/10.1016/j.spmi.2010.05.013

    Article  CAS  Google Scholar 

  • Duran, C., Gundogdu, A., Bulut, V. N., Soylak, M., Elci, L., Sentürk, H. B., & Tüfekci, M. (2007). Solid-phase extraction of Mn (II), Co (II), Ni (II), Cu (II), Cd (II) and Pb (II) ions from environmental samples by flame atomic absorption spectrometry (FAAS). Journal of Hazardous Materials, 146(1–2), 347–355.

    Article  CAS  Google Scholar 

  • Frisbie, S. H., Mitchell, E. J., Dustin, H., Maynard, D. M., & Sarkar, B. (2012). World Health Organization discontinues its drinking-water guideline for manganese. Environmental Health Perspectives, 120(6), 775–778. https://doi.org/10.1289/ehp.1104693

    Article  CAS  Google Scholar 

  • Fseha, Y. H., Sizirici, B., & Yildiz, I. (2022). Manganese and nitrate removal from groundwater using date palm biochar: Application for drinking water. Environmental Advances, 8, 100237. https://doi.org/10.1016/j.envadv.2022.100237

    Article  CAS  Google Scholar 

  • Gao, Z., & Ma, X. (2011). Speciation analysis of mercury in water samples using dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. Analytica Chimica Acta, 702(1), 50–55. https://doi.org/10.1016/j.aca.2011.06.019

    Article  CAS  Google Scholar 

  • Ghaedi, M., Niknam, K., Taheri, K., Hossainian, H., & Soylak, M. (2010). Flame atomic absorption spectrometric determination of copper, zinc and manganese after solid-phase extraction using 2, 6-dichlorophenyl-3, 3-bis (indolyl) methane loaded on Amberlite XAD-16. Food and Chemical Toxicology, 48(3), 891–897.

    Article  CAS  Google Scholar 

  • Heidari, H. R., Shahtaheri, S. J., Alimohammadi, M., & Rahimi-Froshani, A. (2009). Trace analysis of xylene in occupational exposures monitoring. Iranian Journal of Public Health, 38(1), 89–99.

    CAS  Google Scholar 

  • Jalili, V., Ghanbari Kakavandi, M., Ghiasvand, A., & Barkhordari, A. (2022). Microextraction techniques for sampling and determination of polychlorinated biphenyls: A comprehensive review. Microchemical Journal, 179, 107442. https://doi.org/10.1016/j.microc.2022.107442

    Article  CAS  Google Scholar 

  • Kendüzler, E., Türker, A. R., & Yalçınkaya, Ö. (2006). Separation and preconcentration of trace manganese from various samples with Amberlyst 36 column and determination by flame atomic absorption spectrometry. Talanta, 69(4), 835–840. https://doi.org/10.1016/j.talanta.2005.11.021

    Article  CAS  Google Scholar 

  • Khajeh, M. (2010). Silver nanoparticles for the adsorption of manganese from biological samples. Biological Trace Element Research, 138(1), 337–345. https://doi.org/10.1007/s12011-009-8600-x

    Article  CAS  Google Scholar 

  • Khajeh, M., & Barkhordar, A. (2013). Modelling of solid-phase tea waste extraction for the removal of manganese from food samples by using artificial neural network approach. Food Chemistry, 141(2), 712–717. https://doi.org/10.1016/j.foodchem.2013.04.075

    Article  CAS  Google Scholar 

  • Khan, W. A., Arain, M. B., & Soylak, M. (2020). Nanomaterials-based solid phase extraction and solid phase microextraction for heavy metals food toxicity. Food and Chemical Toxicology, 145, 111704. https://doi.org/10.1016/j.fct.2020.111704

    Article  CAS  Google Scholar 

  • Kromah, V., & Zhang, G. (2021). Aqueous adsorption of heavy metals on metal sulfide nanomaterials: Synthesis and application. Water, 13(13), 1843.

    Article  CAS  Google Scholar 

  • Lemos, V. A., & David, G. T. (2010). An on-line cloud point extraction system for flame atomic absorption spectrometric determination of trace manganese in food samples. Microchemical Journal, 94(1), 42–47.

    Article  CAS  Google Scholar 

  • Li, D., Ma, X., Wang, R., & Yu, Y. (2017). Determination of trace bisphenol A in environmental water by high-performance liquid chromatography using magnetic reduced graphene oxide based solid-phase extraction coupled with dispersive liquid–liquid microextraction. Analytical and Bioanalytical Chemistry, 409(5), 1165–1172. https://doi.org/10.1007/s00216-016-0087-7

    Article  CAS  Google Scholar 

  • Low, K. S., Lee, C. K., & Lee, K. P. (1993). Sorption of copper by dye-treated oil-palm fibres. Bioresource Technology, 44(2), 109–112.

    Article  CAS  Google Scholar 

  • Ma, X., Huang, B., & Cheng, M. (2007). Analysis of trace mercury in water by solid phase extraction using dithizone modified nanometer titanium dioxide and cold vapor atomic absorption spectrometry. Rare Metals, 26(6), 541–546. https://doi.org/10.1016/S1001-0521(08)60004-2

    Article  CAS  Google Scholar 

  • Marcus, J. B. (2013). Chapter 7 - Vitamin and mineral basics: The ABCs of healthy foods and beverages, including phytonutrients and functional foods: healthy vitamin and mineral choices, roles and applications in nutrition, food science and the culinary arts. In J. B. B. T.-C. N. Marcus (Ed.), (pp. 279–331). Academic Press. https://doi.org/10.1016/B978-0-12-391882-6.00007-8

    Chapter  Google Scholar 

  • Nasrollahzadeh, M., Issaabadi, Z., Sajjadi, M., Sajadi, S. M., & Atarod, M. (2019). Chapter 2 - Types of Nanostructures. In M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, Z. Issaabadi, M. B. T.-I. S, & T. Atarod (Eds.), An introduction to green nanotechnology (Vol. 28, pp. 29–80). Elsevier. https://doi.org/10.1016/B978-0-12-813586-0.00002-X

    Chapter  Google Scholar 

  • Neves, D. S. C., Souza, A. S., & de Lemos, L. R. (2020). Multivariate optimization of an aqueous two-phase extraction for determination of cadmium and manganese in food sample. Microchemical Journal, 159, 105458. https://doi.org/10.1016/j.microc.2020.105458

    Article  CAS  Google Scholar 

  • Pasinszki, T., Krebsz, M., Chand, D., Kótai, L., Homonnay, Z., Sajó, I. E., & Váczi, T. (2020). Carbon microspheres decorated with iron sulfide nanoparticles for mercury(II) removal from water. Journal of Materials Science, 55(4), 1425–1435. https://doi.org/10.1007/s10853-019-04032-3

    Article  CAS  Google Scholar 

  • Rajabi, M., Rahimi, M., Hemmati, M., & Najafi, F. (2018). Chemically functionalized silica nanoparticles-based solid-phase extraction for effective pre-concentration of highly toxic metal ions from food and water samples. Applied Organometallic Chemistry, 32(2), e4012. https://doi.org/10.1002/aoc.4012

    Article  CAS  Google Scholar 

  • Rudi, N. N., Muhamad, M. S., Te Chuan, L., Alipal, J., Omar, S., Hamidon, N., Abdul Hamid, N. H., Mohamed Sunar, N., Ali, R., & Harun, H. (2020). Evolution of adsorption process for manganese removal in water via agricultural waste adsorbents. Heliyon, 6(9). https://doi.org/10.1016/j.heliyon.2020.e05049

  • Şaylan, M., Demirel, R., Ayyıldız, M. F., Chormey, D. S., Çetin, G., & Bakırdere, S. (2023). Nickel hydroxide nanoflower–based dispersive solid-phase extraction of copper from water matrix. Environmental Monitoring and Assessment, 195(1), 133.

    Article  Google Scholar 

  • Socas-Rodríguez, B., Herrera-Herrera, A. V., Asensio-Ramos, M., & Hernández-Borges, J. (2015). Dispersive solid-phase extraction. In Analytical separation science (pp. 1525–1570). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527678129.assep056

  • Song, X., & Huang, X. (2022). Recent developments in microextraction techniques for detection and speciation of heavy metals. Advances in Sample Preparation, 2, 100019. https://doi.org/10.1016/j.sampre.2022.100019

    Article  Google Scholar 

  • Tokalıoğlu, Ş., Papak, A., & Kartal, Ş. (2017). Separation/preconcentration of trace Pb(II) and Cd(II) with 2-mercaptobenzothiazole impregnated Amberlite XAD-1180 resin and their determination by flame atomic absorption spectrometry. Arabian Journal of Chemistry, 10(1), 19–23. https://doi.org/10.1016/j.arabjc.2013.04.017

    Article  CAS  Google Scholar 

  • Xie, X., Ma, X., Guo, L., Fan, Y., Zeng, G., Zhang, M., & Li, J. (2019). Novel magnetic multi-templates molecularly imprinted polymer for selective and rapid removal and detection of alkylphenols in water. Chemical Engineering Journal, 357, 56–65. https://doi.org/10.1016/j.cej.2018.09.080

    Article  CAS  Google Scholar 

  • Yilmaz, E., & Soylak, M. (2017). Innovative, simple and green ultrasound assisted-enzyme based hydrolytic microextraction method for manganese at trace levels in food samples. Talanta, 174, 605–609. https://doi.org/10.1016/j.talanta.2017.06.069

    Article  CAS  Google Scholar 

  • Zaman, B. T., Bakaraki Turan, N., Bakirdere, E. G., Topal, S., Sağsöz, O., & Bakirdere, S. (2020). Determination of trace manganese in soil samples by using eco-friendly switchable solvent based liquid phase microextraction-3 holes cut slotted quartz tube-flame atomic absorption spectrometry. Microchemical Journal, 157. https://doi.org/10.1016/j.microc.2020.104981

Download references

Code availability

Not applicable

Funding

This study was funded by The Scientific and Technological Research Council of Turkey (TÜBİTAK) with project number 1919B012100885.

Author information

Authors and Affiliations

Authors

Contributions

Efe Sinan Aydın: data curation, formal analysis, investigation, methodology, validation, visualization, writing — original draft. Buse Tuğba Zaman: data curation, formal analysis, methodology, validation, visualization, writing — original draft. Gamze Dalgıç Bozyiğit: data curation, formal analysis, methodology, validation, visualization, writing — original draft. Sezgin Bakırdere: conceptualization, data curation, investigation, methodology, supervision, validation, writing — review and editing.

Corresponding author

Correspondence to Sezgin Bakırdere.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 45 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydın, E.S., Zaman, B.T., Bozyiğit, G.D. et al. Analytical application of flower-shaped nickel nanomaterial for the preconcentration of manganese in domestic wastewater samples. Environ Monit Assess 195, 1358 (2023). https://doi.org/10.1007/s10661-023-11989-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11989-x

Keywords

Navigation