Skip to main content

Advertisement

Log in

Correlation analysis of different optical remote sensing indices for drought monitoring: a case study of Canton Sarajevo, Bosnia and Herzegovina

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Droughts are second to hurricanes the world’s most costly weather events. Damage caused by droughts in certain countries is measured in tens of billions of dollars per year. Timely detection of drought and prediction of its occurrence has the potential to reduce costs and save a large number of people from its consequences. Numerous methods that serve this purpose exist in scientific research and practice. One group of drought monitoring methods belongs to the field of remote sensing, where it is possible to monitor drought indicators over large areas in almost real-time through satellite images. This paper is focused on the optical indices of remote sensing calculated by raster algebra. The intention was to reach conclusions about the quality of individual indices used for the Canton Sarajevo area in Bosnia and Herzegovina for each month of August in the period 2008–2021 through correlational and qualitative analysis and the use of meteorological indicators. Among the used indices, NDVI (normalized difference vegetation index) and NMI (normalized moisture index) proved to be the most reliable, and their mutual correlation was very strong (r = 0.99).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The Landsat satellite data that support the findings of this study are available from the USGS service (https://www.usgs.gov/). The meteorological data used in this work were provided by the Federal Hydrometeorological Institute of Bosnia and Herzegovina and can be obtained upon request (https://www.fhmzbih.gov.ba/latinica/).

References

  • AghaKouchak, A., Farahmand, A., Melton, F., Teixeira, J., Anderson, M., Wardlow, B., & Hain, C. (2015). Remote sensing of drought: Progress, challenges and opportunities. Reviews of Geophysics, 53(2), 452–480. https://doi.org/10.1002/2014RG000456

    Article  Google Scholar 

  • Alahacoon, N., & Edirisinghe, C. M. (2022a). A comprehensive assessment of remote sensing and traditional based drought monitoring indices at global and regional scale. Geomatics, Natural Hazards and Risk, 13(1), 762–799. https://doi.org/10.1080/19475705.2022.2044394

    Article  Google Scholar 

  • Alahacoon, N., & Edirisinghe, C. M. (2022b). Novel index for hydrological drought monitoring using remote sensing approach: Standardized water surface index (SWSI). Remote Sensing, 14(21), 5324. https://doi.org/10.3390/rs14215324

    Article  Google Scholar 

  • Amalo, L. F., Hidayat, R., & Haris. (2017). Comparison between remote-sensing-based drought indices in East Java. IOP Conference Series: Earth and Environmental Science 54, 012009. https://doi.org/10.1088/1755-1315/54/1/012009

  • Amalo, L. F., Ma’rufah, U., & Permatasari, P. A. (2018). Monitoring 2015 drought in West Java using normalized difference water index (NDWI). IOP Conference Series Earth and Environmental Science, 149(1), 012007. https://doi.org/10.1088/1755-1315/149/1/012007

    Article  Google Scholar 

  • Anyamba, A., & Tucker, C. J. (2012). Historical perspectives on AVHRR NDVI and vegetation drought monitoring. In B. D. Wardlow, M. C. Anderson & J. P. Verdin (Eds.), Remote Sensing of Drought: Innovative Monitoring Approaches (1st ed., pp. 23–49). CRC Press.

  • Bannari, A., Mohamed, A. M. A., & El-Battay, A. (2017). Water stress detection as an indicator of red palm weevil attack using worldview-3 data. IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort worth, TX, USA, 2017, 4000–4003. https://doi.org/10.1109/IGARSS.2017.8127877

    Article  Google Scholar 

  • Benabdelouahab, T., Balaghi, R., Hadria, R., Lionboui, H., Minet, J., & Tychon, B. (2015). Monitoring surface water content using visible and short-wave infrared SPOT-5 data of wheat plots in irrigated semi-arid regions. International Journal of Remote Sensing, 36(15), 4018–4036. https://doi.org/10.1080/01431161.2015.1072650

    Article  Google Scholar 

  • Bijaber, N., & Rochdi, A. (2022). Development of a comprehensive remote sensing technique for drought monitoring in Morocco. In H. El-Askary, Z. A. Erguler, M. Karakus & H. I. Chaminé (Eds.), Research Developments in Geotechnics, Geo-Informatics and Remote Sensing (1st ed., pp. 311–313). Springer.

  • Blank, V., Skidanov, R., Doskolovich, L., & Kazanskiy, N. (2021). Spectral diffractive lenses for measuring a modified red edge simple ratio index and a water band index. Sensors, 21(22), 7694. https://doi.org/10.3390/s21227694

    Article  Google Scholar 

  • Čadro, S., Žurovec, J., & Čadro-Cherni, S. (2017). Severity, magnitude and duration of droughts in Bosnia and Herzegovina using standardized precipitation evapotranspiration index (SPEI). Agriculture & Forestry, 63(3), 199–206. https://doi.org/10.17707/AgricultForest.63.3.20

  • Čadro, S., Čadro-Cherni, S., Marković, M., & Žurovec, J. (2019). A reference evapotranspiration map for Bosnia and Herzegovina. International Soil and Water Conservation Research, 7(1), 89–101. https://doi.org/10.1016/j.iswcr.2018.11.002

    Article  Google Scholar 

  • Campaña-Olaya, J., & Tafur, E. G. (2021). Multitemporal analysis of the NDDI, comparison with the NDWI to determine the drought in the Tumbes National Reserve, Peru, 1986 – 2019. Manglar, 18(4), 389–395. https://doi.org/10.17268/manglar.2021.050

  • Chakraborty, A., & Sehgal, V. (2010). Assessment of agricultural drought using MODIS derived normalized difference water index. Journal of Agricultural Physics, 10, 28–36.

    Google Scholar 

  • Chang, S. (2018). DroughtWatch method and development. Regional Workshop on understanding the operational aspect of the drought observation system in Mongolia, September 17th, 2018, Ulaanbaatar, Mongolia.

  • Cibula, W. G., Zetka, E. F., & Rickman, D. L. (1992). Response of thematic mapper bands to plant water stress. International Journal of Remote Sensing, 13(10), 1869–1880. https://doi.org/10.1080/01431169208904236

    Article  Google Scholar 

  • Crowder, S., Delker, C., Forrest, E., & Martin, N. (2020). Introduction to statistics in metrology. Springer.

    Book  Google Scholar 

  • Đidelija, M., Kulo, N., Mulahusić, A., Tuno, N., & Topoljak, J. (2022). Segmentation scale parameter influence on the accuracy of detecting illegal landfills on satellite imagery. A case study for Novo Sarajevo. Ecological Informatics, 70, 101755. https://doi.org/10.1016/j.ecoinf.2022.101755

  • Dong, T., Meng, L., & Zhang, W. (2015). Analysis of the application of MODIS shortwave infrared water stress index in monitoring agricultural drought. Journal of Remote Sensing, 19(2), 319–327. https://doi.org/10.11834/jrs.20153355

  • Dong, T., Ren, D., Meng. L, Zhang, W., & Shao, P. (2018). Remote sensing evaluation of drought degree based on threshold-optimized fuzzy majority voting model. Transactions of the Chinese Society of Agricultural Engineering, 34(12), 137–145. https://doi.org/10.11975/j.issn.1002-6819.2018.12.016

  • Du, T. L. T., Bui, D. D., Nguyen, M. D., & Lee, H. (2018). Satellite-based, multi-indices for evaluation of agricultural droughts in a highly dynamic tropical catchment, Central Vietnam. Water, 10, 659. https://doi.org/10.3390/w10050659

    Article  Google Scholar 

  • Ducić, V., Rade, I., Mihajlović, J., Gnjato, R., Trbić, G., & Čurčić, N. B. (2015). Dendroindication of drought in Rogatica region (Eastern Bosnia). Archives of Biological Sciences, 67(1), 201–211. https://doi.org/10.2298/ABS141114025D

    Article  Google Scholar 

  • Dutta, D., Das, P. K., Paul, S., Khemka, T., Nanda, M. K., & Dadhwal, V. K. (2016). Spectral response of potato crop to accumulative moisture stress estimated from hydrus-1D simulated daily soil moisture during tuber bulking stage. Journal of the Indian Society of Remote Sensing, 44(3), 363–371. https://doi.org/10.1007/s12524-015-0503-z

    Article  Google Scholar 

  • European Commission. (2013). SPI: Standardized precipitation index. Retrieved October 10, 2022, from https://edo.jrc.ec.europa.eu/documents/factsheets/factsheet_spi_ado.pdf

  • Fadhellatul, K. & Setiawan, B. (2022). Lineament extraction and the correlation to vegetation and moisture indices for groundwater prediction in South Bengkulu, Indonesia. Bulletin of Geology, 6(2), 994–1001. https://doi.org/10.5614/bull.geol.2022.6.2.7

  • Federal Hydrometeorological Institute’s meteorological data for Canton Sarajevo. (2022). Retrieval date 25/01/2022. Institute URL: https://www.fhmzbih.gov.ba/latinica/index.php

  • Feng, H., Chen, C., Dong, H., Wang, J., & Meng, Q. (2013). Modified shortwave infrared perpendicular water stress index: A farmland water stress monitoring method. Journal of Applied Meteorology and Climatology, 52(9), 2024–2032. https://doi.org/10.1175/JAMC-D-12-0164.1

    Article  Google Scholar 

  • Fensholt, R., & Sandholt, I. (2003). Derivation of a shortwave infrared water stress index from MODIS near-and shortwave infrared data in a semiarid environment. Remote Sensing of Environment, 87(1), 111–121. https://doi.org/10.1016/j.rse.2003.07.002

    Article  Google Scholar 

  • Galvão, L. S., Formaggio, A. R., & Tisot, D. A. (2005). Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 hyperion data. Remote Sensing of Environment, 94(4), 523–534. https://doi.org/10.1016/j.rse.2004.11.012

    Article  Google Scholar 

  • Gao, B. C. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3

    Article  Google Scholar 

  • Getahun, Y. S., Li, M. H., & Chen, Y. Y. (2023). Drought characterization and severity analysis using GRACE-TWS and MODIS datasets: A case study from the Awash River Basin (ARB), Ethiopia. Journal of Water and Climate Change, 14(1), 516–542. https://doi.org/10.2166/wcc.2023.361

    Article  Google Scholar 

  • Gulácsi, A., & Kovács, F. (2015). Drought monitoring with spectral indices calculated from modis satellite images in Hungary. Journal of Environmental Geography, 8(3–4), 11–20. https://doi.org/10.1515/jengeo-2015-0008

    Article  Google Scholar 

  • Hardisky, M. A., Klemas, V., & Smart, R. M. (1983). The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies. Photogrammetric Engineering and Remote Sensing, 49(1), 77–83.

    Google Scholar 

  • Hazaymeh, K., & Hassan, Q. K. (2016). Remote sensing of agricultural drought monitoring: A state of art review. AIMS Environmental Science, 3(4), 604–630. https://doi.org/10.3934/environsci.2016.4.604

    Article  Google Scholar 

  • Heidari, S., Shamsipour, A., Kakroodi, A. A., & Bazgeer, S. (2023). Monitoring land cover changes and droughts using statistical analysis and multi-sensor remote sensing data. Environmental Monitoring and Assessment, 195, 618. https://doi.org/10.1007/s10661-023-11195-9

    Article  Google Scholar 

  • Heunann, C., & Schomaker, M. S. (2022). Introduction to statistics and data analysis. Springer.

    Book  Google Scholar 

  • Hodžić, S., Marković, M., & Čustović, H. (2013). Initiative on “capacity development to support national drought management policy”. World Meteorological Organization.

  • Hunt, E. R., Jr., & Rock, B. N. (1989). Detection of changes in leaf water content using near-and middle-infrared reflectances. Remote Sensing of Environment, 30(1), 43–54. https://doi.org/10.1016/0034-4257(89)90046-1

    Article  Google Scholar 

  • Inoubli, R., Abbes, A. B., Farah, I. R., Singh, V., Tadesse, T. and Sattari, M. T. (2020). A review of drought monitoring using remote sensing and data mining methods. 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), September 2–5, 2020, Sousse, Tunisia, pp. 1–6. https://doi.org/10.1109/ATSIP49331.2020.9231697

  • Jaffry, A. H., Raza, H., Haider, S., Masood, M. U., Waseem, M., Shahid, M., & Ali, B. (2022). Proceeding of 2nd National Conference on Sustainable Water Resources Management (SWRM-22), UET Lahore, Pakistan, pp. 94–99.

  • Jalayer, S., Sharifi, A., Abbasi-Moghadam, D., Tariq, A., & Qin, S. (2023). Assessment of spatiotemporal characteristic of droughts using in situ and remote sensing-based drought indices. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 1483–1502. https://doi.org/10.1109/JSTARS.2023.3237380

    Article  Google Scholar 

  • Jaskuła, J., & Sojka, M. (2019). Assessing spectral indices for detecting vegetative overgrowth of reservoirs. Polish Journal of Environmental Studies, 28(6), 4199–4211. https://doi.org/10.15244/pjoes/98994

  • Jedrejek, A., Koza, P., Doroszewski, A., & Pudełko, R. (2022). Agricultural drought monitoring system in Poland-farmers’ assessments vs. monitoring results (2021). Agriculture, 12, 536. https://doi.org/10.3390/agriculture12040536

  • Ji, L., & Peters, A. J. (2003). Assessing vegetation response to drought in the northern great plains using vegetation and drought indices. Remote Sensing of Environment, 87(1), 85–98. https://doi.org/10.1016/S0034-4257(03)00174-3

  • Khorrami, B., & Gündüz, O. (2022). Detection and analysis of drought over Turkey with remote sensing and model-based drought indices. Geocarto International, 37(26), 12171–12193. https://doi.org/10.1080/10106049.2022.2066197

  • Kogan, F. N. (1990). Remote sensing of weather impacts on vegetation in non-homogeneous areas. International Journal of Remote Sensing, 11(8), 1405–1419. https://doi.org/10.1080/01431169008955102

    Article  Google Scholar 

  • Kogan, F. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 15(11), 91–100. https://doi.org/10.1016/0273-1177(95)00079-T

    Article  Google Scholar 

  • Kooistra, L., Leuven, R. S. E. W., Wehrens, R., Nienhuis, P. H., & Buydens, L. M. C. (2003). A comparison of methods to relate grass reflectance to soil metal contamination. International Journal of Remote Sensing, 24(24), 4995–5010. https://doi.org/10.1080/0143116031000080769

    Article  Google Scholar 

  • Kulo, N. (2018). Different methods for remote sensing data integration. Geodetski Glasnik, 49, 55–76.

    Google Scholar 

  • Kureel, N., Sarup, J., Matin, S., & Kureel, K. (2022). Modeling vegetation health and stress using hyperspectral remote sensing data. Modeling Earth Systems and Environment, 8, 733–748. https://doi.org/10.1007/s40808-021-01113-8

    Article  Google Scholar 

  • Landsat 8, 2023. Retrieved January 27, 2023, from https://www.usgs.gov/landsat-missions/landsat-8

  • Landsat 5, 2023. Retrieved January 27, 2023, from https://www.usgs.gov/landsat-missions/landsat-5

  • Landsat 7, 2023. Retrieved January 27, 2023, from https://www.usgs.gov/landsat-missions/landsat-7

  • Lemenkova, P. (2020). GRASS GIS for classification of Landsat TM images by maximum likelihood discriminant analysis: Tokyo area, Japan. Geodetski Glasnik, 51, 5–25.

    Google Scholar 

  • Leščešen, I., Basarin, B., Šraj, M., & Čanjevac, I. (2023). Application of streamflow drought index (SDI) for determining drought events on the Sava River. International conference on hydro-climate extremes and society, June 27–29, 2023, Novi Sad, Serbia. https://doi.org/10.13140/RG.2.2.31232.20481

  • Li, J., Xi, M., Pan, Z., Liu, Z., He, Z., & Qin, F. (2022). Response of NDVI and SIF to meteorological drought in the Yellow River Basin from 2001 to 2020. Water, 14, 2978. https://doi.org/10.3390/w14192978

    Article  Google Scholar 

  • Lillesand, T., Kiefer, R. W. and Chipman, J. (2015). Remote sensing and image interpretation (7th ed.). Wiley.

  • Liu, W. T., & Kogan, F. N. (1996). Monitoring regional drought using the vegetation condition index. International Journal of Remote Sensing, 17(14), 2761–2782. https://doi.org/10.1080/01431169608949106

    Article  Google Scholar 

  • Maan, G. S., Singh, A., Garg, V., & Deen, S. (2019). Updation of topographic features using Landsat-7 images. History Research Journal, 5(4), 1233–1247. https://doi.org/10.6084/m9.figshare.11375799

    Article  Google Scholar 

  • Main, R., Cho, M. A., Mathieu, R., O’Kennedy, M. M., Ramoelo, A., & Koch, S. (2011). An investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 66(6), 751–761. https://doi.org/10.1016/j.isprsjprs.2011.08.001

    Article  Google Scholar 

  • Malakhov, D., & Tsychuyeva, N. (2020). Calculation of the biophysical parameters of vegetation in an arid area of south-eastern Kazakhstan using the normalized difference moisture index (NDMI). Central Asian Journal of Environmental Science and Technology Innovation, 1(4), 189–198. https://doi.org/10.22034/CAJESTI.2020.04.01

  • Mathivha, F., & Mbatha, N. (2022). Comparison of long-term changes in non-linear aggregated drought index calibrated by MERRA–2 and NDII soil moisture proxies. Water, 14(1), 26. https://doi.org/10.3390/w14010026

    Article  Google Scholar 

  • Moazami, N., Keshtkar, A., Hamzeh, S., Mirzaei, S., Keshtkar, H., & Afzali, A. (2022). Remote sensing-based monitoring of the spatiotemporal characteristics of drought using hydro-meteorological indices. Desert, 27(2), 343–358. https://doi.org/10.22059/JDESERT.2022.91090

  • Mukhawana, M. B., Kanyerere, T., & Kahler, D. (2023). Review of in-situ and remote sensing-based indices and their applicability for integrated drought monitoring in South Africa. Water, 15(2), 240. https://doi.org/10.3390/w15020240

    Article  Google Scholar 

  • Murali, A. C. M., Chowdary, V. M., Kesarwani, M., & Neeti, N. (2023). Integrated drought monitoring and assessment using multi-sensor and multi-temporal earth observation datasets: A case study of two agriculture-dominated states of India. Environmental Monitoring and Assessment, 195, 1. https://doi.org/10.1007/s10661-022-10550-6

    Article  Google Scholar 

  • Mutowo, G., & Chikodzi, D. (2014). Remote sensing based drought monitoring in Zimbabwe. Disaster Prevention and Management, 23(5), 649–659. https://doi.org/10.1108/DPM-10-2013-0181

    Article  Google Scholar 

  • Niaz, R., Almazah, M. M. A., Hussain, I., Faisal, M., Al-Rezami, A. Y., & Naser, M. A. (2022). A new comprehensive approach for regional drought monitoring. PeerJ, 2022. https://doi.org/10.7717/peerj.13377

  • Park, J. S., Kim, K. T. and Choi, Y. S. (2008). Application of vegetation condition index and standardized vegetation index for assessment of spring drought in South Korea. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, July 7–11 2008; Volume 3, pp. III:774–777. https://doi.org/10.1109/IGARSS.2008.4779463

  • Pazhanivelan, S., Geethalakshmi, V., Samykannu, V., Kumaraperumal, R., Kancheti, M., Kaliaperumal, R., Raju, M., & Yadav, M. K. (2023). Evaluation of SPI and rainfall departure based on multi-satellite precipitation products for meteorological drought monitoring in Tamil Nadu. Water, 15, 1435. https://doi.org/10.3390/w15071435

    Article  Google Scholar 

  • Popis stanovništva. (2013). Retrieved January 3, 2023, from http://www.statistika.ba/

  • Qian, X., Liang, L., Shen, Q., Sun, Q., Zhang, L., Liu, Z., Zhao, S., & Qin, Z. (2016). Drought trends based on the VCI and its correlation with climate factors in the agricultural areas of China from 1982 to 2010. Environmental Monitoring and Assessment, 188, 1–13. https://doi.org/10.1007/s10661-016-5657-9

    Article  Google Scholar 

  • Qin, Q., Wu, Z., Zhang, T., Sagan, V., Zhang, Z., Zhang, Y., Zhang, C., Ren, H., Sun, Y., Xu, W., & Zhao, C. (2021). Optical and thermal remote sensing for monitoring agricultural drought. Remote Sensing, 13, 5092. https://doi.org/10.3390/rs13245092

    Article  Google Scholar 

  • Quiring, S. M., & Ganesh, S. (2010). Evaluating the utility of the vegetation condition index (VCI) for monitoring meteorological drought in Texas. Agricultural and Forest Meteorology, 150(3), 330–339. https://doi.org/10.1016/j.agrformet.2009.11.015

    Article  Google Scholar 

  • Renza, D., Martinez, E., Arquero, A., & Sanchez, J. (2010). 30th EARSeL Symposium Remote Sensing for Science, Education, and Natural and Cultural Heritage, Paris, France, May 31 – June 03, 2010, pp. 775–782, 34984.

  • Rezaei, A. (2023). Teleconnections between ocean–atmosphere circulations and historical integrated drought in the Middle East and North Africa. Environmental Monitoring and Assessment, 195, 775. https://doi.org/10.1007/s10661-023-11386-4

    Article  Google Scholar 

  • Ridwan, M., Radzi, N., Ahmad, W., Mustafa, I., Din, N., Jalil, Y. E., Isa, A. M., Othman, N. S., & Zaki, W. M. D. W. (2018). Applications of Landsat-8 data: A survey. International Journal of Engineering & Technology, 7(4.35) 436–441. https://doi.org/10.14419/ijet.v7i4.35.22858

  • Rouse, J., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the great plains with ERTS. NASA Goddard Space Flight Center 3d ERTS-1 Symp., Vol. 1, Sect. A, ID 19740022614. Retrieved December 25, 2022, from https://ntrs.nasa.gov/citations/19740022614

  • Ruipeng, J., Wenying, Y., Qian, W., Dongming, L., Rui, F., Jinwen, W. & Yushu, Z. (2021). Dynamic changes in maize NDVI and its response to drought in Liaoning province from 1998 to 2018. 2020 Asia Conference on Geological Research and Environmental Technology, 022021. https://doi.org/10.1088/1755-1315/632/2/022021

  • Shahfahad, S. T., Ali, R., Nguyen, K. A., Naikoo, M. W., Liou, Y. A., Islam, A. R., Mallick, J., & Rahman, A. (2022). Monitoring drought patterns for pre- and post-monsoon seasons in a semi-arid region of western part of India. Environmental Monitoring and Assessment, 194, 396. https://doi.org/10.1007/s10661-022-10028-5

    Article  CAS  Google Scholar 

  • Shashikant, V., Shariff, M. A. R., Wayayok, A., Kamal, M. R., Lee, Y. P., & Takeuchi, W. (2021). Utilizing TVDI and NDWI to classify severity of agricultural drought in Chuping. Malaysia. Agronomy, 11(6), 1243. https://doi.org/10.3390/agronomy11061243

    Article  Google Scholar 

  • Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(2–3), 337–354. https://doi.org/10.1016/S0034-4257(02)00010-X

    Article  Google Scholar 

  • Sriwongsitanon, N., Gao, H., Savenije, H. H. G., Maekan, E., Saengsawang, S., & Thianpopirug, S. (2015). The normalized difference infrared index (NDII) as a proxy for soil moisture storage in hydrological modeling. Hydrology and Earth System Sciences Discussions, 12(8), 8419–8457. https://doi.org/10.5194/hessd-12-8419-2015

    Article  Google Scholar 

  • Sriwongsitanon, N., Gao, H., Savenije, H. H. G., Maekan, E., Saengsawang, S., & Thianpopirug, S. (2016). Comparing the normalized difference infrared index (NDII) with root zone storage in a lumped conceptual model. Hydrology and Earth System Sciences, 20(8), 3361–3377. https://doi.org/10.5194/hess-20-3361-2016

    Article  Google Scholar 

  • Su, Z., He, Y., Dong, X., & Wang, L. (2017). Drought monitoring and assessment using remote sensing. In V. Lakshmi (Eds.), Remote Sensing of Hydrological Extremes (1st ed., pp. 151–172). Springer.

  • Subbian, L. (2021). Assessment of agricultural drought vulnerability in Tamil Nadu using MODIS NDVI, NDWI and VSDI. In R. K. Mishra, R. B. Singh & A. Dubey (Eds.), Sustainable Climate Action and Water Management. Advances in Geographical and Environmental Sciences (1st ed., pp. 211–228). Springer. https://doi.org/10.1007/978-981-15-8237-0_18

  • Sun, B., Qian, J., Chen, X., & Zhou, Q. (2020). Comparison and evaluation of remote sensing indices for agricultural drought monitoring over Kazakhstan. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLIII-B3-2020, 899-903. 10.5194/isprs-archives-XLIII-B3-2020-899-2020

  • Svoboda, M., & Fuchs, B. (2016). Handbook of drought indicators and indices. World Meteorological Organization.

  • Tagesson, T., Ardö, J., Cappelaere, B., Kergoat, L., Abdi, A., Horion, S., & Fensholt, R. (2017). Modeling spatial and temporal dynamics of gross primary production in the Sahel from earth-observation-based photosynthetic capacity and quantum efficiency. Biogeosciences, 14(5), 1333–1348. https://doi.org/10.5194/bg-14-1333-2017

    Article  CAS  Google Scholar 

  • Taloor, A. K., Manhas, D. S., & Kothyari, G. C. (2021). Retrieval of land surface temperature, normalized difference moisture index, normalized difference water index of the Ravi basin using Landsat data. Applied Computing and Geosciences, 9, 100051. https://doi.org/10.1016/j.acags.2020.100051

    Article  Google Scholar 

  • Thavorntam, W., Saengavut, V., Armstrong, L. J., & Cook, D. (2023). Association of farmers’ wellbeing in a drought-prone area, Thailand: Applications of SPI and VCI indices. Environmental Monitoring and Assessment, 195, 612. https://doi.org/10.1007/s10661-023-11157-1

    Article  Google Scholar 

  • United States Geological Survey - USGS. (2022). Landsat 5, Landsat 7, and Landsat 8 free satellite imagery data. Retrieved in the period February – September 2022 from https://www.usgs.gov/

  • Varol, T., Atesoglu, A., Ozel, H. B., & Çetin, M. (2023). Copula-based multivariate standardized drought index (MSDI) and length, severity, and frequency of hydrological drought in the Upper Sakarya Basin, Turkey. Natural Hazards, Published online January 26, 2023. https://doi.org/10.1007/s11069-023-05830-4

  • Vlada Kantona Sarajevo. (2006). Prostorni plan Kantona Sarajevo. Zavod za planiranje razvoja Kantona Sarajevo.

  • Vreugdenhil, M., Greimeister-Pfeil, I., Preimesberger, W., Camici, S., Dorigo, W., Enenkel, M., van der Schalie, R., Steele-Dunne, S., & Wagner, W. (2022). Microwave remote sensing for agricultural drought monitoring: Recent developments and challenges. Frontiers in Water, 4, 1045451. https://doi.org/10.3389/frwa.2022.1045451

    Article  Google Scholar 

  • Wang, Q., Zhao, L., Wang, M., Wu, J., Zhou, W., Zhang, Q., & Deng, M. (2022a). A random forest model for drought: Monitoring and validation for grassland drought based on multi-source remote sensing data. Remote Sensing, 14(19), 4981. https://doi.org/10.3390/rs14194981

    Article  Google Scholar 

  • Wang, Z., Wang, Z., Xiong, J., He, W., Yong, Z., & Wang, X. (2022b). Responses of the remote sensing drought index with soil information to meteorological and agricultural droughts in Southeastern Tibet. Remote Sensing, 14(23), 6125. https://doi.org/10.3390/rs14236125

    Article  Google Scholar 

  • Wassie, S. B., Mengistu, D. A., & Birlie, A. B. (2022). Agricultural drought assessment and monitoring using MODIS-based multiple indices: The case of North Wollo. Ethiopia. Environmental Monitoring and Assessment, 194, 787. https://doi.org/10.1007/s10661-022-10455-4

    Article  Google Scholar 

  • Wei, W., Zhang, J., Zhou, L., Xie, B., Zhou, J., & Chuanhua, L. (2021). Comparative evaluation of drought indices for monitoring drought based on remote sensing data. Environmental Science and Pollution Research, 28, 20408–20425. https://doi.org/10.1007/s11356-020-12120-0

    Article  Google Scholar 

  • Welikhe, P., Essamuah-Quansah, J., Fall, F., & McElhenney, W. (2017). Estimation of soil moisture percentage using LANDSAT-based moisture stress index. Journal of Remote Sensing & GIS, 6(2), 1000200. https://doi.org/10.4172/2469-4134.1000200

    Article  Google Scholar 

  • Wilson, E. F., & Sader, S. A. (2002). Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment, 80(3), 385–396. https://doi.org/10.1016/S0034-4257(01)00318-2

    Article  Google Scholar 

  • Wilson, N. R., & Norman, L. M. (2018). Analysis of vegetation recovery surrounding a restored wetland using the normalized difference infrared index (NDII) and normalized difference vegetation index (NDVI). International Journal of Remote Sensing, 39(10), 3243–3274. https://doi.org/10.1080/01431161.2018.1437297

    Article  Google Scholar 

  • Won, J., & Kim, S. (2023). Ecological drought condition index to monitor vegetation response to meteorological drought in Korean Peninsula. Remote Sensing, 15(2), 337. https://doi.org/10.3390/rs15020337

    Article  Google Scholar 

  • World Meteorological Organization. (2006). Drought monitoring and early warning: Concepts, progress and future challenges. Retrieved January 16, 2023, from http://www.wamis.org/agm/pubs/brochures/WMO1006e.pdf

  • World Health Organization. (2023). Health topics: Drought. Retrieved January 16, 2023, from https://www.who.int/health-topics/drought

  • Yagci, A. L., Liping, D., & Meixia, D. (2014). The influence of land cover-related changes on the NDVI-based satellite agricultural drought indices. 2014 IEEE Geoscience and Remote Sensing Symposium. Quebec City, QC, Canada, 2014, 2054–2057. https://doi.org/10.1109/IGARSS.2014.6946868

    Article  Google Scholar 

  • Zambrano, F., Lillo-Saavedra, M., Verbist, K., & Lagos, O. (2016). Sixteen years of agricultural drought assessment of the BioBío region in Chile using a 250 m resolution vegetation condition index (VCI). Remote Sensing, 8(6), 530. https://doi.org/10.3390/rs8060530

    Article  Google Scholar 

  • Zarei, A. R., Mokarram, M., & Mahmoudi, M. R. (2022). Comparison of the capability of the meteorological and remote sensing drought indices. Water Resources Management, 37(10), 769–796. https://doi.org/10.1007/s11269-022-03403-x

    Article  Google Scholar 

  • Zavod za planiranje razvoja Kantona Sarajevo. (2021). Strategija razvoja Kantona Sarajevo 2021–2027.

  • Zeng, L., Li, T., Huang, H., Zeng, P., He, Y., Jing, L., Yang, Y., & Jiao, S. (2023). Identifying Emeishan basalt by supervised learning with Landsat-5 and ASTER data. Frontiers in Earth Science, 10, 1097778. https://doi.org/10.3389/feart.2022.1097778

    Article  Google Scholar 

  • Zhang, G., Su, X., & Hao, L. (2019). Analyzing the response of vegetation to drought based on NDVI and scPDSI from 1982 to 2015 across China. Transactions of the Chinese Society of Agricultural Engineering, 35(21). https://doi.org/10.11975/j.issn.1002-6819.2019.21.018

  • Zhao, S. H., Wang, Q., Zhang, F., Yao, Y. J., Qin, Q. M., You, L., Li, J. P., Li, Z. J., Wu, Y. T., & Liu, S. H. (2013). Drought mapping using two shortwave infrared water indices with MODIS data under vegetated season. Journal of Environmental Informatics, 21(2), 102–111. https://doi.org/10.3808/jei.201300237

  • Zhu, G., Ju, W., Chen, J. M., Zhou, Y., Li, X., & Xu, X. (2010). Comparison of forest leaf area index retrieval based on simple ratio and reduced simple ratio. 18th International Conference on Geoinformatics, Beijing, China, pp. 1–4. https://doi.org/10.1109/GEOINFORMATICS.2010.5568204

Download references

Acknowledgements

The authors would like to thank the Federal Hydrometeorological Institute of Bosnia and Herzegovina and the Ministry of Science, Higher Education, and Youth of Canton Sarajevo for their support.

Author information

Authors and Affiliations

Authors

Contributions

Muamer Đidelija: conceptualization, introduction, materials and methods, software, results and discussion, conclusions. Nedim Kulo: conceptualization, introduction, materials and methods, software, results and discussion, conclusions. Admir Mulahusić: conceptualization, materials and methods, results and discussion, conclusions. Nedim Tuno: materials and methods, results and discussion, conclusions. Jusuf Topoljak: materials and methods, results and discussion, conclusions.

Corresponding author

Correspondence to Muamer Đidelija.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Đidelija, M., Kulo, N., Mulahusić, A. et al. Correlation analysis of different optical remote sensing indices for drought monitoring: a case study of Canton Sarajevo, Bosnia and Herzegovina. Environ Monit Assess 195, 1338 (2023). https://doi.org/10.1007/s10661-023-11930-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11930-2

Keywords

Navigation