Skip to main content
Log in

Dynamics of environmental variables during the incidence of algal bloom in the coastal waters of Gujarat along the northeastern Arabian Sea

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The dynamics of physico-chemical, nutrient, and chlorophyll-a variables were studied in the bloom and non-bloom locations along the off-Gujarat coastal waters to understand the variability in biogeochemistry using multivariate analytical tests. The dissolved oxygen was significantly lower in the bloom stations (3.89 ± 0.44 mgL−1) than in the non-bloom stations (5.50 ± 0.70 mg L−1), due to the biological degradation of organic matter in addition to anaerobic microbial respiration. Nutrients (PO4 and NO3) and Chl-a concentrations were recorded higher in the bloom locations at 0.83 ± 0.21 µmol L−1, 4.47 ± 0.69 µmol L−1, 4.14 ± 1.49 mg m−3, respectively. PO4 and NO3 have shown a significantly higher positive correlation of r = 0.73 and r = 0.69 with Chl-a for bloom data than the non-bloom data. The percentage variance contributed by PC1 and PC2 for both bloom and non-bloom locations were estimated at 52.33%. The variable PO4 explains the highest 24.19% variability in PC1, followed by Chl-a (19.89%). The PO4 triggers the bloom formation and also correlates to the higher concentrations of Chl-a in the bloom locations. The bloom concentration ranges from 9553 to 12,235 trichomes L−1. The bloom intensity has shown a significant positive correlation with Chl-a (r = 0.77), NO3 (r = 0.56), and PO4 (r = 0.30), but a negative correlation was noticed with DO (r =  − 0.63) and pH (r =  − 0.49). The study also initiates a way forward research investigation on ocean-color technologies to identify and monitor blooms and climate change–driven factors for bloom formation. The occurrence of bloom and its influence on fishery resources and other marine biotas will open many research windows in marine fisheries, oceanography, remote sensing, marine biology, and trophodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The supporting data is available with the corresponding author.

References

  • Ahmed, A., Gauns, M., Kurian, S., Bardhan, P., Pratihary, A., Naik, H., & Naqvi, S. W. A. (2017). Nitrogen fixation rates in the eastern Arabian Sea. Estuarine, Coastal and Shelf Science191, 74–83.

  • Ahn, Y. H., & Shanmugam, P. (2006). Detecting the red tide algal blooms from satellite ocean color observations in optically complex Northeast-Asia coastal waters. Remote Sensing of Environment, 103, 419–437.

    Google Scholar 

  • Al Shehhi, M .R., Gherboudj, I., & Ghedira, H. (2014). An overview of historical harmful algae blooms outbreaks in the Arabian Seas. Marine Pollution bulletin, 86(1–2), 314–324. pmid: 25038981.

  • Al-Azri, A., Al-Hashmi, K., Goes, J., Gomes, H., Rushdi, A. I., Al-Habsi, H., et al. (2007). Seasonality of the bloom-forming heterotrophic dinoflagellate Noctiluca scintillans in the Gulf of Oman in relation to environmental conditions. International Journal of Oceans and Oceanography, 2(1), 51–60.

    Google Scholar 

  • Allen, J. I., Anderson, D., Burford, M., Dyhrman, S., Flynn, K., Glibert, P. M., Granéli, E., Heil, C., Sellner, K., Smayda, T., & Zhou, M. (2006). Global ecology and oceanography of harmful algal blooms, harmful algal blooms in eutrophic systems (P. Glibert, Ed., GEOHAB report 4, p. 74). Paris/Baltimore: IOC and SCOR.

  • Anderson, D. M., Gilbert, P. M., & Burkholder, J. M. (2002). Harmful algal blooms and eutrophication: Nutrient sources, composition and consequences. Estuaries, 25, 704–726.

    Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). American Public Health Association.

    Google Scholar 

  • Basu, S., Matondkar, S. G., & Furtado, I. (2011). Enumeration of bacteria from a Trichodesmium spp. bloom of the eastern Arabian Sea: Elucidation of their possible role in biogeochemistry. Journal of Applied Phycology23(2), 309–319.

  • Bracher, A., Vountas, M., Dinter, T., Burrows, J. P., Röttgers, R., & Peeken, I. (2009). Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data. Biogeosciences, 2009(6), 751–764.

    Google Scholar 

  • Bracher, A., Bouman, H. A., Brewin, R. J. W., Bricaud, A., Brotas, V., Ciotti, A. M., Clementson, L., Devred, E., Di Cicco, A, Dutkiewicz, S., Hardman-Mountford, N. J., Hickman, A. E., Hieronymi, M., Hirata, T., Losa, S. N., Mouw, C. B., Organelli, E., Raitsos, D. E., Uitz, J., Vogt, M., & Wolanin, A. (2017). Obtaining phytoplankton diversity from ocean color: A scientific roadmap for future development. Frontiers in Marine Science, 4. https://doi.org/10.3389/fmars.2017.00055.

  • Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., & Zhang, J. (2018). Declining oxygen in the global ocean and coastal waters. Science, 359(6371).

  • Capone, D. G., Subramaniam, A., Montoya, J. P., Voss, M., Humborg, C., Johansen, A. M., & Carpenter, E. J. (1998). An extensive bloom of the N2-fixing cyanobacterium Trichodesmium erythraeum in the central Arabian Sea. Marine Ecology Progress Series172, 281–292.

  • Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B., & Carpenter, E. J. (1997). Trichodesmium, a globally significant marine bacteria. Science, 276, 1221–1229.

    CAS  Google Scholar 

  • Chang, J., Chiang, K. P., & Gong, G. C. (2000). Seasonal variation and cross-shelf distribution of the nitrogen-fixing cyanobacterium, Trichodesmium, in the southern East China Sea. Continental Shelf Research, 20, 479–492.

    Google Scholar 

  • Chaturvedi, N., Chakravarty, M. & Narain, A. (1986). “Techniques in algal bloom mapping using LANDSAT MSS data”. In Scientific Note IRS-UP/SAC/MAF/SN/01/86.

  • Chauhan, P., Nagur, C. R. C., Mohan, M., Nayak, S. R., & Navalgund, R. R. (2001). Surface chlorophyll distribution in Arabian Sea and Bay of Bengal using IRS-P4 ocean color monitor satellite data. Current Science, 80, 127–129.

    Google Scholar 

  • D’Silva, M. S., Anil, A. C., Naik, R. K., & D’Costa, P. M. (2012). Algal blooms: A perspective from the coasts of India. Natural Hazards, 63, 1225–1253.

    Google Scholar 

  • De Sousa, S. N., Dileepkumar, M., Sardessai, S., Sarma, V. V. S. S., & Shirodkar, P. V. (1996). Seasonal variability in oxygen and nutrients in the central and eastern Arabian Sea. Current Science, 71, 847–851.

    Google Scholar 

  • Desa, E., Suresh, T., Matondkar, S. G. P., Desa, E., Goes, J., Mascarenhas, A., Parab, S. G., Shaikh, N., & Fernandes, C. E. G. (2005). Detection of Trichodesmium bloom patches along the eastern Arabian Sea coast by IRS-P4/OCM ocean color sensor and by in situ measurements. Ind. J. Mar. Sci., 34, 374–386.

    Google Scholar 

  • Devassy, V. P., Bhatrarhiri, P. M. A., & Qasim, S. Z. (1978). Trichodesmium phenomenon. Indian Journal of Marine Science, 73, 168–186.

    Google Scholar 

  • Dias, A., Kurian, S., & Thayapurath, S. (2020). Optical characteristics of colored dissolved organic matter during blooms of Trichodesmium in the coastal waters off Goa. Environmental Monitoring and Assessment, 192(8), 1–18.

    Google Scholar 

  • Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science321(5891), 926–929.

  • Gomes do Rosario, H., Goes, J. I., Matondkar, S. P., Parab, S. G., Al-Azri, A. R. & Thoppil, P. G. (2008). Blooms of Noctiluca miliaris in the Arabian Sea—An in situ and satellite study. Deep Sea Research Part i: Oceanographic Research Papers, 55(6), 751–765.

    Google Scholar 

  • Dupouy C., Petit, M., & Dandonneau, Y. (1988). Satellite detected cyanobacteria bloom in the southwestern tropical Pacific implication for oceanic nitrogen fixation. International Journal of Remote Sensing, 9(3), 389–396.

  • Dwivedi R., Rafeeq M., Smitha B. R., Padmakumar K. B., Thomas L. C., Sanjeevan V. N., et al. (2015). Species identification of mixed algal bloom in the northern Arabian Sea using remote sensing techniques. Environmental Monitoring and Assessment, 187(2), 51. pmid:25638059.

  • Dwivedi, R. M., Chauhan, R., Solanki, H. U., Raman, M., Matondkar, S. G. P., Madhu, V., & Meenakumari, B. (2012). Study of ecological consequence of the bloom (Noctiluca miliaris) in off shore waters of the northern Arabian Sea. Indian Journal of Geo Marine Sciences, 41(4), 304–313.

    CAS  Google Scholar 

  • Dwivedi, R. M., Raman, M., Parab, S., Matondkar, S. G. P., & Nayak, S. (2006). Influence of northeasterly trade winds on intensity of winter bloom in the northern Arabian Sea. Current Science, 90(10), 1397–1406.

    CAS  Google Scholar 

  • Ghatkar, J. G., Singh, R. K., & Shanmugam, P. (2019). Classification of algal bloom species from remote sensing data using an extreme gradient boosted decision tree model. International Journal of Remote Sensing, 40(24), 9412–9438.

    Google Scholar 

  • Gilbert, D., Rabalais, N. N., Diaz, R. J., & Zhang, J. (2010). Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean. Biogeosciences, 7(7), 2283–2296.

    CAS  Google Scholar 

  • Glibert, P. M., Anderson, D. M., Gentien, P., Granéli, E., & Sellner, K. G. (2005). The global, complex phenomena of harmful algal blooms. Oceanography, 18(2), 130–141.

    Google Scholar 

  • Gokul, E. A., Raitsos, D. E., Gittings, J. A., Alkawri A., & Hoteit, I. (2019). Remotely sensing harmful algal blooms in the Red Sea. PLoS ONE, 14(4), e0215463. https://doi.org/10.1371/journal. pone.0215463

  • Gokul, E. A., & Shanmugam, P. (2016). An optical system for detecting and describing major algal blooms in coastal and oceanic waters around India. Journal of Geophysical Research: Oceans, 121(6), 4097–4127.

  • Gopinathan, C. P., Rajagopalan, M., Kaladharan, P., & Prema, D. (2007). Training manual on phytoplankton identification/taxonomy.

  • Grasshoff, K., Ehrhardt, M., & Kremling, K. (1983). Seawater analysis.

  • Hallegraeff, G. M. (1993). A review of harmful algal blooms and their apparent global increase. Phycologia, 32(2), 79–99.

    Google Scholar 

  • Harrison, P. J., Piontkovski, S., & Al-Hashmi, K. (2017). Understanding how physical-biological coupling influences harmful algal blooms, low oxygen and fish kills in the Sea of Oman and the western Arabian Sea. Marine Pollution Bulletin, 114(1), 25–34.

    CAS  Google Scholar 

  • Hegde, S., Anil, A. C., Patil, J. S., Mitbavkar, S., Krishnamurthy, V., & Gopalakrishna, V. V. (2008). Influence of environmental settings on the prevalence of Trichodesmium spp. in the Bay of Bengal. Marine Ecology Progress Series, 356, 93–101. https://github.com/valentint/pcaPP

    Google Scholar 

  • Hu, C., Cannizzaro, J., Carder, K. L., Muller-Karger, F. E., & Hardy, R. (2010). Remote detection of Trichodesmium blooms in optically complex coastal waters: Examples with MODIS full-spectral data. Remote Sensing of Environment, 114(9), 2048–2058.

    Google Scholar 

  • IOCCG. (2000). Remote sensing of ocean colour in coastal, and other optically-complex waters. In S. Sathyendranath (Ed.), reports of the International Ocean-Colour Coordinating Group, No. 3, IOCCG, Dartmouth, Canada (140pp.).

  • Jyothibabu, R., Madhu, N. V., Murukesh, N., Haridas, P., Nair, K. K. C., & Venugopal, P. (2003). Intense blooms of Trichodesmium erythraeum (Cyanophyta) in the open waters along east coast of India. Indian J Mar Sci, 32, 165–167.

    Google Scholar 

  • Jyothibabu, R., Karnan, C., Jagadeesan, L., Arunpandi, N., Pandiarajan, R. S., Muraleedharan, K. R., & Balachandran, K. K. (2017). Trichodesmium blooms and warm-core ocean surface features in the Arabian Sea and the Bay of Bengal. Marine Pollution Bulletin, 121(1–2), 201–215.

    CAS  Google Scholar 

  • Kannan, R., & Vasantha, K. (1992). Hydrobiologia, 1992(247), 77–86.

    Google Scholar 

  • Kim, S., Chung, S., Park, H., Cho, Y., & Lee, H. (2019). Analysis of environmental factors associated with cyanobacterial dominance after river weir installation. Water, 11(6), 1163.

    CAS  Google Scholar 

  • King, T., Claassen, L., Borchert, J. & Trainer, V. (2018). “Soundtoxins: A puget sound harmful algae monitoring partnership,” in Proceedings of the Salish Sea ecosystem conference, (Seattle, WA).

  • Koya, K. P. S., & Kaladharan, P. (1997). Trichodesmium bloom and mortality of Canthigaster margaritatus in the Lakshadweep Sea. Marine Fisheries Information Service Technical and Extension Series, 147, 14.

    Google Scholar 

  • Krishnan, A. A., Krishnakumar, P. K., & Rajagopalan, M. (2007). Trichodesmium erythraeum (EHR) bloom along the southwest coast of India (Arabian Sea) and its impact on trace metal concentrations in seawater. Estuarine, Coastal and Shelf Science, 71, 641–646.

    Google Scholar 

  • Kudela, R. M., Seeyave, S., & Cochlan, W. P. (2010). The role of nutrients in regulation and promotion of harmful algal blooms in upwelling systems. Progress in Oceanography, 85(1–2), 122–135.

    Google Scholar 

  • Kumar, M., Padmavati, G., & Pradeep, H. (2015). Applied Ecology and Environmental Research, 37(2), 49–57.

  • Madhu, N. V., Reny, P. D., Paul, M., Ullas, N., & Resmi, P. (2011). Occurrence of red tide caused by Karenia mikimotoi (toxic dinoflagellate) in the southwest coast of India. Indian Journal of Geo-Marine Sciences, 40(6), 821–825.

    Google Scholar 

  • Martin, G. D., Jyothibabu, R., Madhu, N. V., Balachandran, K. K., Nair, M., Muraleedharan, K. R., & Revichandran, C. (2013). Impact of eutrophication on the occurrence of Trichodesmium in the Cochin backwaters, the largest estuary along the west coast of India. Environmental Monitoring and Assessment185(2), 1237–1253.

  • McCabe, R. M., Hickey, B. M., Kudela, R. M., Lefebvre, K. A., Adams, N. G., Bill, B. D., & Trainer, V. L. (2016). An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophysical Research Letters43(19), 10–366.

  • McKinna, L. I. (2015). Three decades of ocean-color remote-sensing Trichodesmium spp. in the world’s oceans: A review. Progress in Oceanography, 131, 177–199.

    Google Scholar 

  • Minu, P., Shaju, S. S., Souda, V. P., Usha, B., Ashraf, P. M., & Meenakumari, B. (2015). Hyperspectral variability of phytoplankton blooms in coastal waters off Kochi, south-eastern Arabian Sea. Fishery technology, 52(4), 218–222. Retrieved from https://epubs.icar.org.in/index.php/FT/article/view/52989

  • Mohanty, A. K., Satpathy, K. K., Sahu, G., Hussain, K. J., Prasad, M. K. V. & Sarkar, S. K. (2010). Bloom of Trichodesmium erythraeum (Ehr.) and its impact on water quality and plankton community structure in the coastal waters of southeast coast of India. Indian Journal of Marine Science, 39(3), 323–333.

  • Naqvi, S. W. A., George, M. D., Narvekar, P. V., Jayakumar, D. A., Shailaja, M. S., Sardesai, S., Sarma, V. V. S. S., Shenoy, D. M., Naik, H., Maheswaran, P. A., Krishnakumari, K., Rajesh, G., Sudhir, A. K., & Binu, M. S. (1998). Severe fish mortality associated with ‘red tide’ observed in the sea off Cochin. Current Science, 75, 543–544.

    Google Scholar 

  • Nayak, B. B., & Karunasagar, I. (2000). Bacteriological and physico-chemical factors associated with Noctiluca milicans bloom along Mangalore, southwest coast of Indian. Indian Journal of Marine Sciences, 29, 139–143.

    CAS  Google Scholar 

  • Padmakumar, K. B., Menon, N. R., & Sanjeevan, V. N. (2012). Is occurrence of harmful algal blooms in the exclusive economic zone of India on the rise? International Journal of Oceanography, 2012, 1–7.

    Google Scholar 

  • Padmakumar, K. B., Smitha, B. R., Thomas, L. C., Fanimol, C. L., SreeRenjima, G., Menon, N. R., & Sanjeevan, V. N. (2010). Blooms of Trichodesmium erythraeum in the south eastern Arabian Sea during the onset of 2009 summer monsoon. Ocean Science Journal, 45(3), 151–157.

    CAS  Google Scholar 

  • Parab, S. G., & Matondkar, S. G. P. (2012). Primary productivity and nitrogen fixation by Trichodesmium spp. in the Arabian Sea. Journal of Marine Systems, 105, 82–95.

    Google Scholar 

  • Parab, S. G., Matondkar, S. P., Raman, M. I. N. I., & Dwivedi, R. M. (2012). Distribution and ecology of the Trichodesmium spp. in the Arabian Sea: Ship and satellite studies.

  • Pettersson, L. H., & Pozdnyakov, D. (2013). Potential of remote sensing for identification, delineation, and monitoring of harmful algal blooms. In Monitoring of harmful algal blooms. Springer, Berlin, Heidelberg., 2013, 49–111.

    Google Scholar 

  • Prabhu Matondkar, S. G., Bhat, S. R., Dwivedi, R. M., & Nayak, S. R. (2004). Indian satellite IRS-P4 (OCEANSAT). Monitoring algal blooms in the Arabian Sea. Harmful Algae News, 26, 4–5.

    Google Scholar 

  • Qasim, S. Z. (1970). Some characteristics of a Trichodesmium bloom in the Laccadives. Deep Sea Res, 17, 655–660.

    Google Scholar 

  • Raghavan, B. R., Deepthi, T., Ashwini, S., Shylini, S. K., Kumarswami, M., Kumar, S. R. I. N. I. V. A. S., & Lotliker, A. A. (2010). Spring inter monsoon algal blooms in the eastern Arabian sea: Shallow marine encounter off Karwar and Kumbla coast using a hyperspectral radiometer. International Journal of Earth Sciences and Engineering, 3(6), 827–832.

    Google Scholar 

  • Raghavan B. R., Raman, M., Chauhan, P., Kumar, B. S., Shylini, S. K., Mahendra, R. S., & Nayak S. R. (2006). “Summer chlorophyll-a distribution in eastern Arabian Sea off Karnataka-Goa coast from satellite and in-situ observations”, Proc. SPIE 6406. Remote Sensing of the Marine Environment, 64060W. https://doi.org/10.1117/12.694232

  • Ramamurthy, V. D., & Krishnamurthy, S. (1968). Current Science, 1968(37), 21–22.

    Google Scholar 

  • Roy, R., Pratihary, A., Narvenkar, G., Mochemadkar, S., Gauns, M., & Naqvi, S. W. A. (2011). The relationship between volatile halocarbons and phytoplankton pigments during a Trichodesmium bloom in the coastal eastern Arabian Sea. Estuarine, Coastal and Shelf Science, 95(1), 110–118.

    CAS  Google Scholar 

  • Sahu, B. K., Baliarsingh, S. K., Lotliker, A. A., Parida, C., Srichandan, S., & Sahu, K. C. (2017). Winter thermal inversion and Trichodesmium dominance in north-western Bay of Bengal. Ocean Science Journal, 52(2), 301–306.

    Google Scholar 

  • Sahu, G., Mohanty, K. A., Sarangi, K. R., Bramha, N. S., & Satpathy, K. K. (2016). Current Science, 110(6), 979–981.

  • Sahu, K., B., Begum, M., Kumarasamy, P., Vinithkumar, V. N., & Kirubagaran, R. (2014). Indian Journal of Marine Sciences, 43(9).

  • Santhanam, P., Balaji, P. B., Nandakumar, R., Jothiraj, K., Dineshkumar, S., Ananth, S., Premkumar, C., Shenbagadevi, A., & Jayalakshmi, T. (2013). Occurrence of Trichodesmium erythraeum Ehrenberg bloom in the Muthupettai mangrove lagoon, southeast coast of India. Seaweed Research Utilization, 35(1&2), 178–186.

    Google Scholar 

  • Sarangi, R. K. (2012). Observation of algal bloom in the northwest Arabian Sea using multisensor remote sensing satellite data. Marine Geodesy, 35(2), 158–174.

    Google Scholar 

  • Sarangi, R. K., Chauhan, P., Nayak, S. R., & Shreedhar, U. (2005). Cover: Remote sensing of Trichodesmium blooms in the coastal waters off Gujarat, India using IRS-P4 OCM. International Journal of Remote Sensing, 26(9), 1777–1780.

    Google Scholar 

  • Sarangi, R. K., Chauhan, P., & Nayak, S. R. (2004). Detection and monitoring of Trichodesmium blooms in the coastal waters off Saurastra coast, India using IRS-P4 OCM data. Current Science, 86, 1636–1641.

    Google Scholar 

  • Sarkar S. K. (2018). Algal blooms: Potential drivers, occurrences and impact. In: Marine algal bloom: Characteristics, causes and climate change impacts. Springer, Singapore. https://doi.org/10.1007/978-981-10-8261-0_2

  • Satpathy, K. K., & Nair, K. V. K. (1996). Occurrence of phytoplankton bloom and its effect on coastal water quality. Indian J Mar Sci, 25, 145–147.

    Google Scholar 

  • Shanmugam, P. (2011). A new bio-optical algorithm for the remote sensing of algal blooms in complex ocean waters. Journal of Geophysical Research: Oceans, 116(C4).

  • Simon, A., & Shanmugam, P. (2012). An algorithm for classification of algal blooms using MODIS-Aqua data in oceanic waters around India. Advances in Remote Sensing, 1(2).

  • Smetacek, V. (1998). Diatoms and the silicate factor. Nature, 391, 224–225. https://doi.org/10.1038/34528

  • Smitha, B. R., Sanjeevan, V. N., Padmakumar, K. B., Hussain, M. S., Salini, T. C., & Lix, J. K. (2022). Role of mesoscale eddies in the sustenance of high biological productivity in north eastern Arabian Sea during the winter-spring transition period. Science of the Total Environment, 809, 151173.

    Google Scholar 

  • Spatharis, S., Skliris, N., Meziti, A., & Kormas, K. A. (2012). First record of a Trichodesmium erythraeum bloom in the Mediterranean Sea. Canadian Journal of Fisheries and Aquatic Sciences, 69(8), 1444–1455.

    Google Scholar 

  • Strickland, J. D. H., & Parsons, T. R. (1972). A practical handbook of seawater analysis.

  • Stone, H. B., Banas, N. S., MacCready, P., Trainer, V. L., Ayres, D. L., & Hunter, M. V. (2022). Assessing a model of Pacific northwest harmful algal bloom transport as a decision-support tool. Harmful Algae, 119, 102334.

    Google Scholar 

  • Subramaniam, A., Brown, C. W., Hood, R. R., Carpenter, E. J., & Capone, D. G. (2001). Detecting Trichodesmium blooms in SeaWiFS imagery. Deep sea research part II: Topical Studies in Oceanography, 49(1–3), 107–121.

  • Subramaniam, A., Carpenter, E. J., & Falkowski, P. G. (1999). Bio‐optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. II. A reflectance model for remote sensing. Limnology and Oceanography, 44(3), 618–627.

  • Tang, D. L., Kuwamura, H., & Luis, A. J. (2002). Short term variability of phytoplankton blooms associated with a cold eddy in the northwest Arabian Sea. Remote Sensing of Environment, 81, 82–89.

    Google Scholar 

  • Temkar, G. S., Abdul Azeez, P., Sikotaria, K. M., Brahmane, V. T., Metar, S. Y., Gangan, S. S., Mathew, K. L., & Desai, A. Y. (2015). Correlation of phytoplankton density with certain hydrological parameters along the coastal waters of Veraval, Gujarat. Journal of Marine Biological Association of India. https://doi.org/10.6024/jmbai.2015.57.2.01870-0x

  • Tholkapiyan, M., Shanmugam, P., & Suresh, T. (2014). Monitoring of ocean surface algal blooms in coastal and oceanic waters around India. Environmental Monitoring and Assessment, 186(7), 4129–4137.

    CAS  Google Scholar 

  • Thomas, L. C., Padmakumar, K. B., Smitha, B. R., Devi, C. A., Nandan, S. B., & Sanjeevan, V. N. (2013). Spatio-temporal variation of microphytoplankton in the upwelling system of the south-eastern Arabian Sea during the summer monsoon of 2009. Oceanologia, 55(1), 185–204.

    Google Scholar 

  • Trainer, V. L., Cochlan, W. P., Erickson, A., Bill, B. D., Cox, F. H., Borchert, J. A., et al. (2007). Recent domoic acid closures of shellfish harvest areas in Washington State inland waterways. Harmful Algae, 6, 449–459. https://doi.org/10.1016/j.hal.2006.12.001

    Article  CAS  Google Scholar 

  • Trivedi, R. K., & Goel, P. K. (1986). Chemical and biological methods for water pollution studies. Publication, Karad.

    Google Scholar 

  • Vase, V. K., Dash, G., Sreenath, K. R., Shailendra, R., Mohammed, K. K., Divu, D., Dash, S., Pradhan, R. K., Sukhdhane, K. S., & Jayasankar, J. (2018). Spatio-temporal variability of physico-chemical variables, chlorophyll a, and primary productivity in the northern Arabian Sea along India coast (2018). Environmental Monitoring and Assessment, 190, 148.

    Google Scholar 

  • Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with s. Springer-Verlag.

    Google Scholar 

  • Westberry, T. K., & Siegel, D. A. (2006). Global Biogeochmical Cycle, 2006(20), 4016.

    Google Scholar 

  • Yu, S., Gong, F., He, X., Bai, Y., Zhu, Q., Wang, D., & Chen, P. (2016). Satellite views of the massive algal bloom in the Persian Gulf and the Gulf of Oman during 2008–2009. In Remote sensing of the ocean, sea ice, coastal waters, and large water regions 2016 (Vol. 9999, p. 99990Z). International Society for Optics and Photonics.

  • Zhan, P., Subramanian, A.C., Yao, F., & Hoteit, I. (2014). Eddies in the Red Sea: A statistical and dynamical study. Journal of Geophysical Research: Oceans, 119(6), 3909–3925.

  • Zingone, A., & Enevoldsen, H. O. (2000). The diversity of harmful algal blooms: A challenge for science and management. Ocean and Coastal Management, 43, 725–748.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Indian Council of Agricultural Research (ICAR), Director, ICAR-CMFRI, former Scientist In-Charge and Scientists, Veraval Regional Station, and Head, Fishery Resources Assessment Division, ICAR-CMFRI, Kochi, for the encouragement and support during the study period. The authors are thankful for the support and encouragement provided by Director, ISRO-SAC, Ahmadabad, to carry out the current study.

Author information

Authors and Affiliations

Authors

Contributions

VKV: conceptualization, data curation and analysis, and writing the manuscript. MR: data curation, project administration, and supervision. AS: investigation and review and editing. SR: data curation, writing original draft, and literature retrieval. RK: formal analysis, review and editing. SKR: investigation, project administration, and methodology. GRD: investigation and project administration. JJ: methodology, supervision, and review and editing. PR: supervision, review, and editing. RK: investigation, resources, and review and editing.

Corresponding author

Correspondence to Vinaya Kumar Vase.

Ethics declarations

Ethics approval and consent to participate

In no case, human participants whose consent to participate was needed to be involved.

Consent for publication

Consent for publication was taken from the competent authority and all co-authors.

Competing interests

The authors declare no competing interests.

Additional information

“All authors have read, understood, and complied as applicable with the statement on ‘Ethical responsibilities of Authors’ as found in the instructions for authors and are aware that with minor exceptions, no changes can be made to authorship once the paper is submitted.”

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vase, V.K., Raman, M., Sahay, A. et al. Dynamics of environmental variables during the incidence of algal bloom in the coastal waters of Gujarat along the northeastern Arabian Sea. Environ Monit Assess 195, 1238 (2023). https://doi.org/10.1007/s10661-023-11827-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11827-0

Keywords

Navigation