Skip to main content

Advertisement

Log in

Interannual and seasonal variability and future forecasting of pCO2(water) using the ARIMA model and CO2 fluxes in a tropical estuary

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The seasonal and interannual variation in the partial pressure of carbon dioxide in water [pCO2(water)] and air-water CO2 exchange in the Mahanadi estuary situated on the east coast of India was studied between March 2013 and March 2021. The principal aim of the study was to analyze the spatiotemporal variability and future trend of pCO2 and air-water CO2 fluxes along with the related carbonate chemistry parameters like water temperature, pH, salinity, nutrients, and total alkalinity, over 9 years. The seasonal CO2 flux over nine years was also calculated using five worldwide accepted equations. The seasonal map of pCO2(water) followed a general trend of being high in monsoon (2628 ± 3484 μatm) associated with high river inflow and low during pre-monsoon (445.6 ± 270.0 μatm). High pCO2 in water compared to the atmosphere (average 407.6–409.4 μatm) was observed in the estuary throughout the sampling period. The CO2 efflux computed using different gas transfer velocity formulas was also consistent with pCO2 water acquiring the peak during monsoon in the Mahanadi estuary (6033 ± 9478 μmol m−2 h−1) and trough during pre-monsoon (21.66± 187.2 μmol m−2 h−1). The estuary acted as a net source of CO2 throughout the study period, with significant seasonality in the flux magnitudes. However, CO2 sequestration via photosynthesis by phytoplankton resulted in lower emission rates toward the atmosphere in summer. This study uses the autoregressive integrated moving average (ARIMA) model to forecast pCO2(water) for the future. Using measured and predicted values, our work demonstrated that pCO2(water) has an upward trend in the Mahanadi estuary. Our results demonstrate that long-term observations from estuaries should be prioritized to upscale the global carbon budget.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The authors themselves have measured the primary data used in this study and the secondary data used in this study is duly cited all through the manuscript and provided as supplementary information.

References

  • Abril, G., Libardoni, B. G., Brandini, N., Cotovicz, L. C., Jr., Medeiros, P. R., Cavalcante, G. H., & Knoppers, B. A. (2021). Thermodynamic uptake of atmospheric CO2 in the oligotrophic and semiarid São Francisco estuary (NE Brazil). Marine Chemistry, 233, 103983.

    CAS  Google Scholar 

  • Akhand, A., Chanda, A., Dutta, S., Manna, S., Sanyal, P., Hazra, S., Rao, K. H., & Dadhwal, V. K. (2013). Dual character of Sundarban estuary as a source and sink of CO2 during summer: an investigation of spatial dynamics. Environmental Monitoring and Assessment, 185, 6505–6515.

    CAS  Google Scholar 

  • Akhand, A., Chanda, A., Manna, S., Das, S., Hazra, S., Roy, R., Choudhury, S. B., Rao, K. H., Dadhwal, V. K., Chakraborty, K., & Mostofa, K. M. G. (2016). A comparison of CO2 dynamics and air-water fluxes in a river-dominated estuary and a mangrove-dominated marine estuary. Geophysical Research Letters, 43(11), 726-11,735.

    Google Scholar 

  • Akhand, A., Chanda, A., Watanabe, K., Das, S., Tokoro, T., Hazra, S., & Kuwae, T. (2021). Reduction in riverine freshwater supply changes inorganic and organic carbon dynamics and air-water CO2 fluxes in a tropical mangrove dominated estuary. Journal of Geophysical Research: Biogeosciences, 126(5), e2020JG006144.

    CAS  Google Scholar 

  • Akhtar, S., Equeenuddin, S. M., & Bastia, F. (2021). Distribution of pCO2 and air-sea CO2 flux in Devi estuary, eastern India. Applied Geochemistry, 131, 105003.

    CAS  Google Scholar 

  • APHA Awwa WEF. (1998). Standard methods for examination of water and wastewater (20th ed.). American Public Health Association.

    Google Scholar 

  • Bastia, F., & Equeenuddin, S. M. (2016). Spatio-temporal variation of water flow and sediment discharge in the Mahanadi River, India. Global and Planetary Change, 144, 51e66.

    Google Scholar 

  • Best, J. (2019). Anthropogenic stresses on the world’s big rivers. Nature Geoscience, 12(1), 7–21.

    CAS  Google Scholar 

  • Borges, A. V. (2005). Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries, 28, 3–27.

    CAS  Google Scholar 

  • Borges, A. V., Delille, B., Schiettecatte, L. S., Gazeau, F., Abril, G., & Frankignoulle, M. (2004). Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnology and Oceanography, 49(5), 1630–1641.

    CAS  Google Scholar 

  • Borges, A. V., Vanderborght, J. P., Schiettecatte, L. S., Gazeau, F., Ferrón-Smith, S., Delille, B., & Frankignoulle, M. (2004). Variability of the gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt). Estuaries, 27(4), 593–603.

    CAS  Google Scholar 

  • Box, G. E., Jenkins, G. M., & Reinsel, G. (1970). Time series analysis: forecasting and control Holden-day San Francisco. In BoxTime Series Analysis: Forecasting and Control Holden Day 1970.

    Google Scholar 

  • Burkholder, J. M., Dickey, D. A., Kinder, C. A., Reed, R. E., Mallin, M. A., McIver, M. R., et al. (2006). Comprehensive trend analysis of nutrients and related variables in a large eutrophic estuary: a decadal study of anthropogenic and climatic influences. Limnology and Oceanography, 51(1part2), 463–487.

    CAS  Google Scholar 

  • Cai, W. J., Dai, M., & Wang, Y. (2006). Air-sea exchange of carbon dioxide in ocean margins: a province-based synthesis. Geophysical Research Letters, 33(12).

  • Cai, W. J., Feely, R. A., Testa, J. M., Li, M., Evans, W., Alin, S. R., Xu, Y. Y., Pelletier, G., Ahmed, A., Greeley, D. J., Newton, J. A., & Bednaršek, N. (2021). Natural and anthropogenic drivers of acidification in large estuaries. Annual Review of Marine Science, 13, 23–55.

    Google Scholar 

  • Chan, F., Barth, J. A., Lubchenco, J., Kirincich, A., Weeks, H., Peterson, W. T., & Menge, B. A. (2008). Emergence of anoxia in the California current large marine ecosystem. Science, 319, 920.

    CAS  Google Scholar 

  • Chanda, A., Das, S., Bhattacharyya, S., Akhand, A., Das, I., Samanta, S., et al. (2020). CO2 effluxes from an urban tidal river flowing through two of the most populated and polluted cities of India. Environmental Science and Pollution Research, 27(24), 30093–30107.

    CAS  Google Scholar 

  • Chen, C. T., Huang, T. H., Chen, Y. C., Bai, Y., He, X., & Kang, Y. (2013). Air–sea exchanges of CO2 in the world's coastal seas. Biogeosciences, 10, 6509–6544.

    CAS  Google Scholar 

  • Chen, C. T. A., & Borges, A. V. (2009). Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep Sea Research Part II: Topical Studies in Oceanography, 56, 578–590.

    CAS  Google Scholar 

  • Chen, C. T. A., Huang, T. H., Fu, Y. H., Bai, Y., & He, X. (2012). Strong sources of CO2 in upper estuaries become sinks of CO2 in large river plumes. Current Opinion in Environment Sustainability, 4, 179–185.

    Google Scholar 

  • Crosswell, J. R., Wetz, M. S., Hales, B., & Paerl, H. W. (2012). Air-water CO2 fluxes in the microtidal Neuse river estuary, North Carolina. Journal of Geophysical Research, Oceans, 117, C08017.

    Google Scholar 

  • Dai, M., Yin, Z., Meng, F., Liu, Q., & Cai, W. J. (2012). Spatial distribution of riverine DOC inputs to the ocean: An updated global synthesis. Current Opinion in Environment Sustainability, 4(2), 170–178.

    Google Scholar 

  • Dey, M., Chowdhury, C., Pattnaik, A. A., Ganguly, D., Mukhopadhyay, S. K., De, T. K., & Jana, T. K. (2013). Comparison of Monsoonal change of water quality parameters between 1983 and 2008 in a tropical estuary in northeastern India: Role of phytoplankton and community metabolism. Marine Ecology, 34(1), 14–29. https://doi.org/10.1111/j.1439-0485.2012.00519.x

    Article  CAS  Google Scholar 

  • Dinauer, A., & Mucci, A. (2017). Spatial variability in surface-water pCO2 and gas exchange in the world's largest semi-enclosed estuarine system: St. Lawrence Estuary (Canada). Biogeosciences, 14, 3221–3237.

    CAS  Google Scholar 

  • dos Santos Costa, D., & Cutrim, M. V. J. (2021). Spatial and seasonal variation in physicochemical characteristics and phytoplankton in an estuary of a tropical delta system. Regional Studies in Marine Science, 44, 101746.

    Google Scholar 

  • Evans, C. D., Chapman, P. J., Clark, J. M., Monteith, D. T., & Cressers, M. S. (2006). Alternative explanations for rising dissolved organic carbon export from organic soils. Global Change Biology, 12, 2044–2053.

    Google Scholar 

  • FAO - Food and Agriculture Organization of the United Nations (2010). Global forest resources assessment 2010.

  • Feely, R. A., Alin, S. R., Newton, J., Sabine, C. L., Warner, M., Devol, A., Krembs, C., & Maloy, C. (2010). The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuarine, Coastal and Shelf Science, 88(4), 442–449.

    CAS  Google Scholar 

  • Frankignoulle, M., Abril, G., Borges, A., Bourge, I., Canon, C., Delille, B., Libert, E., & Théate, J. M. (1998). Carbon dioxide emission from European estuaries. Science, 282(5388), 434–436.

    CAS  Google Scholar 

  • Garrison, T. (2012). Essentials of oceanography (6th ed.). Cengage Learning.

    Google Scholar 

  • Grasshoff, K. (1983). Determination of nutrients. In K. Grasshoff, M. Ehrhard, & K. Kremling (Eds.), Methods of sea water analysis (pp. 125–187). Verlag Chemie Weinheim.

    Google Scholar 

  • Grasshoff, K., Ehrhardt, M., & Kremling, K. (1999). Methods of seawater analysis (3rd ed.). Wiley.

    Google Scholar 

  • Gupta, G. V. M., Thottathil, S. D., Balachandran, K. K., Madhu, N. V., Madeswaran, P., & Nairn, S. (2009). CO2 supersaturation and net heterotrophy in a tropical estuary (Cochin, India): influence of anthropogenic effect. Ecosystems, 12, 1145–1157.

    CAS  Google Scholar 

  • Gupta, L. P., Subramanian, V., & Ittekkot, V. (1997). Biogeochemistry of particulate organic matter transported by the Godavari River, India. Biogeochemistry, 38(2), 103–128.

    CAS  Google Scholar 

  • Ho, D. T., Schlosser, P., & Orton, P. M. (2011). On factors controlling air-water gas exchange in a large tidal river. Estuaries and Coasts, 34(6), 1103–1116.

    CAS  Google Scholar 

  • Jeffrey, L. C., Maher, D. T., Santos, I. R., Call, M., Reading, M. J., Holloway, C., & Tait, D. R. (2018). The spatial and temporal drivers of pCO2, pCH4 and gas transfer velocity within a subtropical estuary. Estuarine, Coastal and Shelf Science, 208, 83–95.

    CAS  Google Scholar 

  • Jeffrey, S. T., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167, 191–194.

    CAS  Google Scholar 

  • Jin, H., Yoon, T. K., Begum, M. S., Lee, E. J., Oh, N. H., Kang, N., & Park, J. H. (2018). Longitudinal discontinuities in riverine greenhouse gas dynamics generated by dams and urban wastewater. Biogeosciences, 15(20), 6349–6369.

    CAS  Google Scholar 

  • Jordan, T. E., Correll, D. L., Miklas, J. J., & Weller, D. E. (1991). Long-term trends in estuarine nutrients and chlorophyll, and short-term effects of variation in watershed discharge. Marine Ecology Progress Series.

  • Kang, Y., Kang, Y. H., Kim, J. K., Kang, H. Y., & Kang, C. K. (2020). Year-to-year variation in phytoplankton biomass in an anthropogenically polluted and complex estuary: a novel paradigm for river discharge influence. Marine Pollution Bulletin, 161, 111756.

    CAS  Google Scholar 

  • Kant, A., Suman, P. K., Giri, B. K., Tiwari, M. K., Chatterjee, C., Nayak, P. C., & Kumar, S. (2013). Comparison of multi-objective evolutionary neural network, adaptive neuro-inference system and bootstrap-based neural network for flood forecasting. Neural Computing and Applications, 23(1), 231–246.

    Google Scholar 

  • Kanuri, V. V., Muduli, P. R., Robin, R. S., Kumar, B. C., Lovaraju, A., Ganguly, D., Patra, S., Rao, N. G., Raman, A. V., & Subramanian, B. R. (2013). Plankton metabolic processes and its significance on dissolved organic carbon pool in a tropical brackish water lagoon. Continental Shelf Research, 61, 52–61.

    Google Scholar 

  • Kar, R., & Sarkar, A. (2021). Anthropogenic influences on the variation of runoff and sediment load of the Mahanadi River basin. Hydrological Sciences Journal, 66(12), 1820–1844.

    CAS  Google Scholar 

  • Kurup, B. M., Harikrishnan, M., Shibu, A. V., & Mullasseri, S. (2022). Impact of climate change on ecology and fisheries of tropical estuaries with reference to Vembanad Estuary (India): past trends and potential projections. Impact of Climate Change on Hydrological Cycle, Ecosystem, Fisheries and Food Security, 229.

  • Laruelle, G. G., Dürr, H. H., Slomp, C. P., & Borges, A. V. (2010). Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially explicit typology of estuaries and continental shelves. Geophysical Research Letters, 37, L15607.

    Google Scholar 

  • Lewis E, Wallace D W R (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee

  • Liss, P. S., & Merlivat, L. (1986). Air-sea gas exchange rates: introduction and synthesis. In P. Buat-Ménard (Ed.), The Role of Air-Sea Exchange in Geochemical Cycling (pp. 113–127). Springer.

    Google Scholar 

  • Liu, B., Tian, M., Shih, K., Chan, C. N., Yang, X., & Ran, L. (2021). Spatial and temporal variability of pCO2 and CO2 emissions from the Dong River in south China. Biogeosciences, 18(18), 5231–5245.

    CAS  Google Scholar 

  • Maher, D. T., & Eyre, B. D. (2012). Carbon budgets for three autotrophic Australian estuaries: implications for global estimates of the coastal air-water CO2 flux. Global Biogeochemical Cycles, 26(1).

  • Marques, G. F., Lund, J. R., & Howitt, R. E. (2005). Modeling irrigated agricultural production and water use decisions under water supply uncertainty. Water Resources Research, 41(8).

  • Metzl, N., Brunet, C., Jabaud-Jan, A., Poisson, A., & Schauer, B. (2006). Summer and winter air–sea CO2 fluxes in the Southern Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 53(9), 1548–1563.

    CAS  Google Scholar 

  • Miyajima, T., Tsuboi, Y., Tanaka, Y., & Koike, I. (2009). Export of inorganic carbon from two Southeast Asian mangrove forests to adjacent estuaries as estimated by the stable isotope composition of dissolved inorganic carbon. Journal of Geophysical Research – Biogeosciences, 114(G1).

  • Mora, G., & Blaser, L. (2020). Effect of catchment lithology on dissolved inorganic carbon budgets in suburban streams of Baltimore, Maryland, during rainfall minima. Geosciences Journal, 24(1), 85–96.

    CAS  Google Scholar 

  • Mukhopadhyay, S. K., Biswas, H., De, T. K., Sen, S., & Jana, T. K. (2002). Seasonal effects on the air–water carbon dioxide exchange in the Hooghly estuary, NE coast of Bay of Bengal, India. Journal of Environmental Monitoring, 4(4), 549–552.

    CAS  Google Scholar 

  • Munoth, P., & Goyal, R. (2020). Impacts of land use land cover change on runoff and sediment yield of Upper Tapi River Sub-Basin, India. International Journal of River Basin Management, 18(2), 177–189.

    Google Scholar 

  • Murali, R. M., Dhiman, R., Choudhary, R., Seelam, J. K., Ilangovan, D., & Vethamony, P. (2015). Decadal shoreline assessment using remote sensing along the central Odisha coast, India. Environment and Earth Science, 74, 7201–7213.

    Google Scholar 

  • Murdoch, P. S., Baron, J. S., & Miller, T. L. (2000). Potential effects of climate change on surface-water quality in North America. JAWRA Journal of the American Water Resources Association, 36(2), 347–366.

    CAS  Google Scholar 

  • O'Brien, A. L., Dafforn, K. A., Chariton, A. A., Johnston, E. L., & Mayer-Pinto, M. (2019). After decades of stressor research in urban estuarine ecosystems the focus is still on single stressors: a systematic literature review and meta-analysis. The Science of the Total Environment, 684, 753–764.

    CAS  Google Scholar 

  • Oliveira, A. P., Pilar-Fonseca, T., Cabeçadas, G., & Mateus, M. (2018). Local variability of CO2 partial pressure in a mid-latitude mesotidal estuarine system (Tagus Estuary, Portugal). Geosciences, 8(12), 460.

    CAS  Google Scholar 

  • Panda, U. C., Sundaray, S. K., Rath, P., Nayak, B. B., & Bhatta, D. (2006). Application of factor and cluster analysis for characterization of river and estuarine water systems–a case study: Mahanadi River (India). Journal of Hydrology, 331, 434–445.

    CAS  Google Scholar 

  • Park, J. -H., Nayna, O. K., Begum, M. S., Chea, E., Hartmann, J., Keil, R. G., Kumar, S., Lu, X., Ran, L., Richey, J. E., Sarma, V. V. S. S., Tareq, S. M., Xuan, D. T., & Yu, R. (2018). Reviews and syntheses: Anthropogenic perturbations to carbon fluxes in Asian river systems—concepts, emerging trends, and research challenges. Biogeosciences, 15(9), 3049–3069.

    CAS  Google Scholar 

  • Pattanaik, S., Acharya, D., Sahoo, R. K., Satapathy, D. R., Panda, C. R., Choudhury, S. B., Nagamani, P. V., & Roy, R. (2019). Short-Term variability of physico-chemical properties and pCO2 fluxes off Dhamra estuary from north-eastern India. Journal of the Indian Society of Remote Sensing, 47, 1197–1208.

    Google Scholar 

  • Pattanaik, S., Chanda, A., Sahoo, R. K., Swain, S., Satapathy, D. R., Panda, C. R., Choudhury, S. B., & Mohapatra, P. K. (2020). Contrasting intra-annual inorganic carbon dynamics and air–water CO2 exchange in Dhamra and Mahanadi Estuaries of northern Bay of Bengal, India. Limnology, 21, 129–138.

    CAS  Google Scholar 

  • Pérez, A., Machado, W., & Sanders, C. J. (2021). Anthropogenic and environmental influences on nutrient accumulation in mangrove sediments. Marine Pollution Bulletin, 165, 112174.

    Google Scholar 

  • Pradhan, U. K., Shirodkar, P. V., & Sahu, B. K. (2009). Physico-chemical characteristics of the coastal water off Devi estuary, Orissa and evaluation of its seasonal changes using chemometric techniques. Current Science, 96, 1203–1209.

    CAS  Google Scholar 

  • Pramanik, D. S. (2019). Fish species diversity and their assemblages of Devi estuary in north east coast of India. International Journal of Fisheries and Aquatic Studies, 7, 265–273.

    Google Scholar 

  • Raman, R. K., Suresh, V. R., Mohanty, S. K., Bhatta, K. S., Karna, S. K., Mohanty, B. P., & Das, B. K. (2019). Influence of seasonality, salinity and temperature on catch trend of Penaeus indicus H. Milne-Edwards, 1837 in a coastal lagoon, India. Indian Journal of Fisheries, 66(1), 34–42.

    Google Scholar 

  • Rao, A. D., Dash, S., & Babu, S. V. (2004). Numerical study of the circulation and sediment transport in the Mahanadi Estuary. Natural Hazards, 32(2), 219–237.

    Google Scholar 

  • Raw, J. L., Riddin, T., Wasserman, J., Lehman, T. W. K., Bornman, T. G., & Adams, J. B. (2020). Salt marsh elevation and responses to future sea-level rise in the Knysna Estuary, South Africa. African Journal of Aquatic Science, 45(1-2), 49–64.

    Google Scholar 

  • Raymond, P. A., Bauer, J. E., & Cole, J. J. (2000). Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnology and Oceanography, 45(8), 1707–1717.

    CAS  Google Scholar 

  • Raymond, P. A., & Cole, J. J. (2001). Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries, 24(2), 312–317.

    CAS  Google Scholar 

  • Raymond, P. A., & Hopkinson, C. S. (2003). Ecosystem modulation of dissolved carbon age in a temperate marsh-dominated estuary. Ecosystems, 6, 694–705.

    CAS  Google Scholar 

  • Reithmaier, G. M., Chen, X., Santos, I. R., Drexl, M. J., Holloway, C., Call, M., Álvarez, P. G., Euler, S., & Maher, D. T. (2021). Rainfall drives rapid shifts in carbon and nutrient source-sink dynamics of an urbanised, mangrove-fringed estuary. Estuarine, Coastal and Shelf Science, 249, 107064.

    CAS  Google Scholar 

  • Rogers, K., Saintilan, N., & Copeland, C. (2012). Modelling wetland surface elevation dynamics and its application to forecasting the effects of sea-level rise on estuarine wetlands. Ecological Modelling, 244, 148–157.

    Google Scholar 

  • Rosentreter, J. A., Maher, D. T., Ho, D. T., Call, M., Barr, J. G., & Eyre, B. D. (2017). Spatial and temporal variability of CO2 and CH4 gas transfer velocities and quantification of the CH4 microbubble flux in mangrove dominated estuaries. Limnology and Oceanography, 62, 561–578.

    Google Scholar 

  • Sánchez-Rodríguez, J., Sierran, A., Jiménez-López, D., Ortega, T., Gómez-Parra, A., & Forja, J. (2022). Dynamic of CO2, CH4 and N2O in the Guadalquivir estuary. The Science of the Total Environment, 805, 150193.

    Google Scholar 

  • Santos, I. R., Chen, X., Lecher, A. L., Sawyer, A. H., Moosdorf, N., Rodellas, V., Tamborski, J., Cho, H. M., Dimova, M., Sugimoto, R., Bonaglia, S., Li, H., Hajati, M. C., & Li, L. (2021). Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nature Reviews Earth & Environment, 2(5), 307–323.

    Google Scholar 

  • Sarma, V. V., Kumar, M. D., & Manerikar, M. (2001). Emission of carbon dioxide from a tropical estuarine system, Goa, India. Geophysical Research Letters, 28, 1239–1242.

    CAS  Google Scholar 

  • Sarma, V. V. S. S., Kumar, N. A., Prasad, V. R., Venkataramana, V., Appalanaidu, S., Sridevi, B., Kumar, B. S. K., Bharati, M. D., Subbaiah, C. V., Acharyya, T., & Rao, G. D. (2011). High CO2 emissions from the tropical Godavari estuary (India) associated with monsoon river discharges. Geophysical Research Letters, 38, L08601.

    Google Scholar 

  • Sarma, V. V. S. S., Viswanadham, R., Rao, G. D., Prasad, V. R., Kumar, B. S. K., Naidu, S. A., Kumar, N. A., Rao, D. B., Sridevi, T., Krishna, M. S., & Reddy, N. P. C. (2012). Carbon dioxide emissions from Indian monsoonal estuaries. Geophysical Research Letters, 39, L03602.

    Google Scholar 

  • Strickland, J. D. H., & Parsons, T. R. (1972). A practical handbook of seawater analysis

    Google Scholar 

  • Sun, H., & Koch, M. (2001). Case study: analysis and forecasting of salinity in Apalachicola Bay, Florida, using Box-Jenkins ARIMA models. Journal of Hydraulic Engineering, 127(9), 718–727.

    Google Scholar 

  • Sundaray, S. K., Nayak, B. B., & Bhatta, D. (2009). Environmental studies on river water quality with reference to suitability for agricultural pur- poses: Mahanadi river estuarine system, India–a case study. Environmental Monitoring and Assessment, 155, 227–243.

    CAS  Google Scholar 

  • Swain, S., Pattanayak, A. A., Sahu, B. K., Satapathy, D. R., & Panda, C. R. (2021). Time-series monitoring and ecological risk assessment of heavy metal pollution in Mahanadi estuary, east coast of India. Regional Studies in Marine Science, 47, 101923.

    Google Scholar 

  • Takahashi, T., Olafsson, J., Goddard, J. G., Chipman, D. W., & Sutherland, S. C. (1993). Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: a comparative study. Global Biogeochemical Cycles, 7(4), 843–878.

    CAS  Google Scholar 

  • Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Inoue, H. Y., Ishii, M., Midorikawa, T., Nojiri, Y., Kortzinger, A., et al. (2009). Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 56(8-10), 554–577.

    CAS  Google Scholar 

  • Van Dam, B. R., & Wang, H. (2019). Decadal-scale acidification trends in adjacent North Carolina estuaries: competing role of anthropogenic CO2 and riverine alkalinity loads. Frontiers in Marine Science, 6, 136.

    Google Scholar 

  • Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97(C5), 7373–7382.

    Google Scholar 

  • Ward, N. D., Bianchi, T. S., Medeiros, P. M., Seidel, M., Richey, J. E., Keil, R. G., & Sawakuchi, H. O. (2017). Where carbon goes when water flows: carbon cycling across the aquatic continuum. Frontiers in Marine Science, 4, 7.

    Google Scholar 

  • Weiss, R. F. (1974). Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry, 2(3), 203–215.

    CAS  Google Scholar 

  • WHO - World Health Organization (2014) Progress on sanitation and drinking water—2014 update. WHO library cataloguing in publication data.

  • Yadav, A., Chatterjee, S., & Equeenuddin, S. M. (2021). Suspended sediment yield modeling in Mahanadi River, India by multi-objective optimization hybridizing artificial intelligence algorithms. International Journal of Sediment Research, 36(1), 76–91.

    Google Scholar 

  • Zappa, C. J., Raymond, P. A., Terray, E. A., & McGillis, W. R. (2003). Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary. Estuaries, 26, 1401–1415.

    CAS  Google Scholar 

  • Zhai, W., & Dai, M. (2009). On the seasonal variation of air–sea CO2 fluxes in the outer Changjiang (Yangtze River) Estuary, East China Sea. Marine Chemistry, 117(1-4), 2–10.

    CAS  Google Scholar 

  • Zhang, J., Du, Y. N., Zhang, G. S., Chang, Y., Zhou, Y. C., Zhang, Z. F., et al. (2021). Increases in the seaward river flux of nutrients driven by human migration and land-use changes in the tide-influenced delta. Science of the Total Environment, 761, 144501.

    CAS  Google Scholar 

  • Zhang, Y., Gao, Y., Kirchman, D. L., Cottrell, M. T., Chen, R., Wang, K., Ouyang, Z., Xu, Y. Y., Chen, B., Yin, K., & Cai, W. J. (2019). Biological regulation of pH during intensive growth of phytoplankton in two eutrophic estuarine waters. Marine Ecology: Progress Series, 609, 87–99.

    CAS  Google Scholar 

  • Zhu, Y. G., Zhao, Y. I., Li, B., Huang, C. L., Zhang, S. Y., Yu, S., Chen, Y. S., Zhang, T., Gillings, M. R., & Su, J. Q. (2017). Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology, 2(4), 1–7.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, CSIR-Institute of Minerals and Materials Technology (IMMT), for the laboratory facilities. SP is thankful to CSIR for SRF fellowship.

Funding

This work is supported by funding of the National Remote Sensing Centre-Indian Space Research Organization (Government of India).

Author information

Authors and Affiliations

Authors

Contributions

Sanhita Swain: formal analysis, investigation, interpretation, writing. Suchismita Pattanaik: conceptualization, analysis, interpretation, original draft. Anirban Akhand: editing, critical revision. Abhra Chanda: interpretation, editing. Rabi Narayan Sahu: formal analysis, investigation. Arakshita Majhi: project coordination and administration, methodology. Chitta Ranjan Panda: project administration, methodology. Deepty Ranjan Satapathy: project administration. Ranajit Kumar Sahoo: graphical input. Rajdeep Roy: project administration. Arya Vedabrata: statistical analysis.

Corresponding author

Correspondence to Suchismita Pattanaik.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 50 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, S., Pattanaik, S., Akhand, A. et al. Interannual and seasonal variability and future forecasting of pCO2(water) using the ARIMA model and CO2 fluxes in a tropical estuary. Environ Monit Assess 195, 1225 (2023). https://doi.org/10.1007/s10661-023-11816-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11816-3

Keywords

Navigation